



ISSN: 1477-2000 (Print) 1478-0933 (Online) Journal homepage: https://www.tandfonline.com/loi/tsab20

### Systematic review of Atractus schach (Serpentes: Dipsadidae) species complex from the Guiana Shield with description of three new species

Paulo Roberto Melo-Sampaio, Paulo Passos, Antoine Fouguet, Ana Lucia Da Costa Prudente & Omar Torres-Carvajal

To cite this article: Paulo Roberto Melo-Sampaio, Paulo Passos, Antoine Fouquet, Ana Lucia Da Costa Prudente & Omar Torres-Carvajal (2019): Systematic review of Atractus schach (Serpentes: Dipsadidae) species complex from the Guiana Shield with description of three new species, Systematics and Biodiversity, DOI: <u>10.1080/14772000.2019.1611674</u>

To link to this article: https://doi.org/10.1080/14772000.2019.1611674



View supplementary material 🕝

| 0.0 |   |
|-----|---|
|     | ł |
|     | ł |
|     | ł |

Published online: 20 Jun 2019.



Submit your article to this journal



則 🛛 View Crossmark data 🗹



Check for updates

# Systematic review of *Atractus schach* (Serpentes: Dipsadidae) species complex from the Guiana Shield with description of three new species

PAULO ROBERTO MELO-SAMPAIO<sup>1</sup> (D), PAULO PASSOS<sup>1</sup> (D), ANTOINE FOUQUET<sup>2</sup> (D), ANA LUCIA DA COSTA PRUDENTE<sup>3</sup> (D) & OMAR TORRES-CARVAJAL<sup>4</sup> (D)

<sup>1</sup>Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, RJ, 20940-040, Brazil

<sup>2</sup>Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Bâtiment 4R1, 118 Route de Narbonne, 31062 Toulouse cedex 9, France

<sup>3</sup>Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, CP 399, Belém, Pará, 66040-170, Brazil <sup>4</sup>Escuela de Biología, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Apartado, Quito, 17-01-2184, Ecuador

(Received 8 August 2018; accepted 18 March 2019)

The Guiana Shield harbours one of the best preserved and largest extents of tropical forest on Earth and an immense biodiversity. The herpetofauna of this region remains poorly known. The species-rich snake genus *Atractus* contains  $\sim$ 140 species, many with complicated taxonomic histories, including *A. schach*. Examination of specimens in museums and newly collected material from French Guiana has allowed the illustration of hemipenial morphology for the first time and an expanded diagnosis. Concatenated molecular phylogenetic (mitochondrial and nuclear genes) and phenotypic (morphometrics, external and hemipenial morphology) analyses confirm non-monophyly of the *A. flammigerus* group and indicate that *A. schach* is a species complex with three new species described here. The geographic distribution of *A. schach sensu stricto* is restricted to Guiana, Surinam, and French Guiana in the Roura lowlands to Almeirim, and from central Amazonia between the Negro and Trombetas rivers in Brazil are also recognized as new species. Our results suggest that populations from south of the Amazon River are not conspecific with those from the Guiana Shield.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:A7AE40BC-4716-4302-B3BE-1F43600B0A72

Key words: Amazonia, Dipsadinae, endemism, hemipenial morphology, molecular phylogeny, snakes, taxonomy

#### Introduction

The Guiana Shield (GS hereafter) is a Precambrian geological formation found in the north-east of South America (Hammond, 2005). The GS harbours one of the best preserved and greatest extents of tropical forest on Earth and an immense biodiversity (Hoogmoed, 1979; Hollowell & Reynolds, 2005). The herpetofauna of this region remains poorly known (Ávila-Pires, 2005; Fouquet, Gilles, Vences, & Marty, 2007; Fouquet et al., 2018; Vacher et al., 2017) though many recent works have improved the taxonomy of several herpetological groups, such as snakes (Passos, Kok, Albuquerque, & Rivas, 2013). Although efforts have been made to understand patterns of occurrence and distribution of species across the GS, we have a limited knowledge of current richness and endemism, which are expected to be substantially underestimated (Fouquet et al., 2007; Funk, Caminer, & Ron, 2012; Vacher et al., 2017).

Many snakes from Neotropical highlands are putatively narrowly endemic (Fraga et al., 2017; Moraes et al., 2017). By contrast, most Amazonian lowland species have been considered to have widespread distributions (e.g., Almeida, Feitosa, Passos, & Prudente, 2014; Passos & Prudente, 2012). However, many recent discoveries, notably in taxa with a secretive lifestyle (fossorial or cryptozoic), have challenged this view revealing many cryptic lowland species with narrow

ISSN 1477-2000 print / 1478-0933 online

© The Trustees of the Natural History Museum, London 2019. All Rights Reserved. https://dx.doi.org/10.1080/14772000.2019.1611674

Correspondence to: Paulo Roberto Melo-Sampaio. E-mail: prmelosampaio@gmail.com

spatial ranges (Hoogmoed, Pinto, Rocha, & Pereira, 2009; Ribeiro, Silva, & Lima, 2016). Consequently, the taxonomy of some groups with wide distribution across Amazonia remains in a state of flux (Kok, 2010; Murphy et al., 2016; Passos, Kok, et al., 2013; Prudente & Passos, 2008; Zaher, Oliveira, & Franco, 2008). With 6 million km<sup>2</sup>, some areas within the Amazon forest remain poorly sampled. Therefore, the Amazonian fauna would benefit from greater systematic investigation through complementary approaches and inventories (Ávila-Pires, Hoogmoed, & Vitt, 2007; Ávila-Pires, Hoogmoed, & Rocha, 2010; Moraes et al., 2017).

With 140 described species, the dipsadid snake *Atractus* is the most speciose genus of living snakes (Passos, Teixeira, et al., 2013). However, many of the currently recognized species are known exclusively from their type series, and aspects related to geographic, ontogenetic and/ or sexual variability, as well as polychromatism, common in the genus, have not yet been properly evaluated (Passos, Cisneros-Heredia, Rivera, Aguilar, & Schargel, 2012). For these reasons, the taxonomic status of many taxa remains ambiguous (Passos, Fernandes, Bérnils, & Moura-Leite, 2010). This is case notably for many *Atractus* from the GS because their original descriptions were brief or inaccurate, notably with the absence of specific provenance data and/or destination of the type material (Passos, Rivas & Barrio-Amorós, 2009).

Six species of Atractus are considered to occur in the GS lowlands: Atractus badius (Boie), A. favae (Filippi), A. flammigerus (Boie), A. schach (Boie), A. torquatus (Duméril, Bribon, & Duméril, 1854), and A. zidoki Gasc & Rodrigues. Boie (1827) described Brachyorrhos badius, B. flammigerus, and B. schach based on individuals whose provenance was wrongly assigned to Java (Hoogmoed, 1980). Wagler (1828) erected the genus Atractus designating A. trilineatus as type species. Two years later, Wagler (1830) proposed the synonymy of Atractus with Brachvorrhos Kuhl. Later, Schlegel (1837) synonymized Brachvorrhos with Calamaria H. Boie. Dumeril et al. (1854) described Rabdosoma torquatum based on Boie's material, transferring Calamaria badia to the genus Rabdosoma A.M.C. Duméril. Boulenger (1894) resurrected the genus Atractus and transferred to it all Rabdosoma species including R. badius, and proposed the synonymy of the genera Adelphicos Jan 1862, Brachvorrhos (in part), Calamaria (in part), and Isoscelis Günther with Atractus. Hoogmoed (1980) rediscovered the syntypes of A. flammigerus, A. schach, and A. torquatus removing the first two from the synonymy of A. badius, also diagnosing all of them (see Hoogmoed, 1980; Passos & Prudente, 2012; Passos et al., 2017 for additional information with respect to the taxonomic status of

aforementioned species). Cunha and Nascimento (1983, 1984, 1993) reported additional specimens, expanding the concept of *Atractus schach* to include specimens from the eastern part of the state of Pará and the western part of the state of Maranhão (south-east of the Amazonian delta), Brazil. Additionally, Nascimento, Ávila-Pires, and Cunha (1988) reported material of A. schach from the BR-429 road in the state of Rondônia, Brazil and Martins and Oliveira (1993) reported seven additional specimens of A. schach from Presidente Figueiredo, state of Amazonas, Brazil, expanding the distribution of the species to southern and central Amazonia. However, these records in Brazilian Amazonia have never been assessed through integrative taxonomy. Recently, Passos, Prudente, and Lynch (2016) proposed the Atractus flammigerus group to accommodate Atractus atratus Passos & Lynch, A. flammigerus, A. fuliginosus (Hallowell), A. major Boulenger, A. punctiventris Amaral, A. schach, A. snethlageae (Cunha & Nascimento, 1978), A. tartarus Passos, Prudente & Lynch and A. univittatus (Jan) based on overall similarities (mainly in hemipenial morphology). However, the monophyly of this group was not recovered (Oliveira & Hernández-Ruz, 2016). So, the aim of this study is to provide a more complete systematic assessment of the A. schach species complex, integrating distinct systems of characters (both genotypic and phenotypic) to better understand Atractus diversity, delimit cryptic species, and improve diagnoses of all recognized taxa. We here focus on the narrowly distributed taxa apparently endemic to the GS and highlight the species complex of non-closely related taxa, previously referred to as A. schach, along Amazonia.

#### Materials and methods

Coordinates of localities were acquired in the field or obtained from museum catalogues or reliable literature records. We refined, when possible, the provenance of records obtained from the literature or in museum databases without specific field coordinates using the software Google Earth Pro 7.1.2 Google Earth Pro (v7.1.2, Google Inc., Mountain View, CA). We follow the biogeographic regionalization of Morrone (2014) employed by Passos et al. (2016) to facilitate comparisons among species. This study is restricted to provinces 33 and 34 (Guianan Lowlands and Roraima provinces).

### Molecular sampling, techniques, and selection of sequences

We obtained liver tissue samples of 53 individuals belonging to 11 nominal species: *Atractus badius*,

Table 1 Newly specimens sequenced in this work.

| Arractus badius         AFI558         MH790471         MK835883         MK835884         MK835973         MK835974           Arractus badius         MNRJ 26711         MK835850         MK835885         MK835974         MK835974           Arractus badius         MNRJ 26712         MH790472         MK835850         MK835875         MK835977         MK835976           Arractus badius         MNRJ 26713         MH790473         MK835861         MK835879         MK835977           Arractus badius         MNRJ 26715         MH790474         MK835863         MK835989         MK835977           Arractus badius         MNRJ 26716         MH790477         MK835863         MK835990         MK835997           Arractus badius         MNRJ 26718         MK835863         MK835893         MK835993         MK835994           Arractus badius         MNRJ 16794         MH790479         MK835865         MK835892         MK835925         MK835992           Arractus dapsilis         MNRJ 16794         MH790479         MK835893         MK835920         MK835930         MK835937           Arractus dapsilis         MNRJ 16794         MK935866         MK835893         MK835925         MK835937           Arractus dapsilis         MNRJ 16794         MK835867                                                                                                                                                                                                     | SPECIES              | VOUCHER                    | 168       | CMOS         | СҮТВ      | ND4          | NT3           | RAG 1          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-----------|--------------|-----------|--------------|---------------|----------------|
| Atractis badius         MNRJ 26710         MK835885           Atractis badius         MNRJ 26711         MK835850         MK835850         MK835877         MK835974           Atractis badius         MNRJ 26712         MH790473         MK835860         MK835877         MK835977           Atractis badius         MNRJ 26714         MH790474         MK835860         MK835888         MK835977           Atractis badius         MNRJ 26716         MH790475         MK835860         MK835890         MK835977           Atractis badius         MNRJ 26717         MH790477         MK835866         MK835890         MK835997           Atractis badius         MNRJ 26717         MH790470         MK835866         MK835890         MK835997           Atractis dapsilis         MNRJ 16794         MH790478         MK835895         MK835926         MK835952           Atractis dapsilis         MNRJ 16796         MH790480         MK835895         MK835952         MK835953           Atractis dapsilis         MNRJ 16794         MH790481         MK835896         MK835956         MK835956           Atractis dapsilis         MNRJ 16802         MH790481         MK835896         MK835957         MK835959           Atractis dapsilis         MNRJ 16802         MH7904                                                                                                                                                                                                     | Atractus badius      | AF1558                     | MH790471  | MK835858     | MK835884  |              | MK835973      | MK835943       |
| Arractis badius         MNRJ 26711         MK835850         MK835860         MK835860         MK835861         MK83587           Arractis badius         MNRJ 26713         MH790472         MK835861         MK83587         MK835976         MK835976           Arractis badius         MNRJ 26711         MH790474         MK835861         MK83587         MK835977         MK835977           Arractis badius         MNRJ 26715         MH790477         MK835863         MK835890         MK835977           Arractis badius         MNRJ 26717         MH790477         MK835863         MK835891         MK835994           Arractis badius         MNRJ 26718         MH790477         MK835864         MK835892         MK835994           Arractis badius         MNRJ 16794         MH790479         MK835893         MK835927         MK835924           Arractis dapsilis         MNRJ 16794         MH790480         MK835896         MK835927         MK835927           Arractis dapsi         OCAZ 574         MK835866         MK835890         MK835986         MK835980           Arractis dapsi         OCAZ 14069         MH790483         MK835867         MK835990         MK835990           Arractis dapsi         OCAZ 14069         MH790484         MK835870 <t< td=""><td>Atractus badius</td><td>MNRJ 26710</td><td></td><td></td><td>MK835885</td><td></td><td></td><td></td></t<>                                                                                    | Atractus badius      | MNRJ 26710                 |           |              | MK835885  |              |               |                |
| Arractus badiue         NIRJ 26712         MIT99473         MK835861         MK835873         MK835975         MK835945           Arractus badiue         NIRJ 26714         MIT99473         MK835863         MK835889         MK835977         MK835946           Arractus badiue         MIRJ 26716         MIT99475         MK835863         MK835890         MK835977         MK835947           Arractus badiue         MIRJ 26716         MIT99475         MK835864         MK835890         MK835997         MK835947           Arractus badiue         MIRJ 26717         MIT99476         MK835866         MK835892         MK8359982         MK8359982           Arractus badiue         MIRJ 16796         MIT99478         MK835895         MK835925         MK835952         MK835952         MK835953           Arractus dapsilis         MIRJ 16796         MIT99481         MK835896         MK835952         MK835953         MK835953         MK835954                                                                                                                                                                           | Atractus badius      | MNRJ 26711                 |           | MK835859     | MK835886  |              | MK835974      | MK835944       |
| Arractis badius         MNRJ 26713         MH790473         MK835861         MK835976         MK835976           Arractis badius         MNRJ 26715         MH790474         MK835880         MK835989         MK835977           Arractis badius         MNRJ 26715         MH790474         MK835880         MK835997         MK835977           Arractis badius         MNRJ 26717         MH790477         MK835805         MK835892         MK835998           Arractis badius         MNRJ 26718         MH790477         MK835805         MK835893         MK835925           Arractis dapsilis         MNRJ 16794         MH790479         MK835895         MK835927         MK835924           Arractis dapsilis         MNRJ 16794         MH790480         MK835895         MK835927         MK835924           Arractis dapsilis         MNRJ 16602         MH790480         MK835866         MK835897         MK835983           Arractis dapsi         QCAZ 5442         MK835866         MK835897         MK835984         MK835983           Arractis dapsi         QCAZ 14069         MK835896         MK835990         MK835993         MK835993           Arractis dapsingerus         QCAZ 14069         MK835971         MK835991         MK8359939         MK835993                                                                                                                                                                                                               | Atractus badius      | MNRJ 26712                 | MH790472  | MK835860     | MK835887  |              | MK835975      | MK835945       |
| Arractus badius         MNRJ 26714         MH790474         MK835862         MK835888         MK835977           Arractus badius         MNRJ 26716         MK835860         MK835890         MK835978         MK835978           Arractus badius         MNRJ 26717         MH790476         MK835860         MK835980         MK835980           Arractus badius         MNRJ 26717         MH790477         MK835865         MK835892         MK835980         MK835980           Arractus badius         MNRJ 16796         MH790477         MK835865         MK835892         MK835982           Arractus dapsilis         MNRJ 16760         MK835893         MK835926         MK835982           Arractus dapsilis         MNRJ 16802         MH790481         MK835893         MK835983           Arractus dapsilis         MNRJ 16802         MH790481         MK835897         MK835985           Arractus dapsilis         QCAZ 5971         MK835866         MK835898         MK835988         MK835984           Arractus dapsilis         QCAZ 4517         MK835866         MK835898         MK835988         MK835984           Arractus dapmingerus         AF 151         MH790483         MK835869         MK835989         MK835984           Arractus dapmingerus         AF 1                                                                                                                                                                                                     | Atractus badius      | MNRJ 26713                 | MH790473  | MK835861     |           |              | MK835976      | MK835946       |
| Atractus badius         MNRJ 26715         MH790475         MK835890         MK835890         MK835897           Atractus badius         MNRJ 26717         MH790476         MK835880         MK835891         MK835980         MK835980           Atractus badius         MNRJ 26717         MH790477         MK835864         MK835891         MK835980         MK835980           Atractus badius         MNRJ 16776         MH790478         MK835866         MK835922         MK835981         MK835980           Atractus dapsilis         MNRJ 16766         MH790481         MK835894         MK835927         MK835953           Atractus dapsilis         MNRJ 16766         MH790481         MK835894         MK835987         MK835985           Atractus daps         QCAZ 5574         MK835866         MK835898         MK835988         MK835984           Atractus elaps         QCAZ 1811         MK835868         MK835898         MK835988         MK835984           Atractus elaps         QCAZ 140169         MH790483         MK835871         MK835890         MK835992           Atractus laminigerus         AF 1721         MH790485         MK835871         MK835901         MK835994           Atractus laminigerus         AF 1721         MH790448         MK835871                                                                                                                                                                                                    | Atractus badius      | MNRJ 26714                 | MH790474  | MK835862     | MK835888  |              | MK835977      |                |
| Atractus balaius         MNRJ 267116         MK835890         MK835991         MK835991           Atractus balaius         MNRJ 267118         MH790477         MK835864         MK835892         MK835980         MK835981         MK835981         MK835981         MK835981         MK835981         MK835981         MK835981         MK835981         MK835981         MK835982         MK835983         MK835983         MK835986         MK8359                                                                                                                              | Atractus badius      | MNRJ 26715                 | MH790475  | MK835863     | MK835889  |              | MK835978      | MK835947       |
| Atractus badius         MNRJ 26717         MH790476         MK835864         MK835891         MK835980         MK835982         MK835980         MK835982         MK835985         MK835986         MK835985         MK835986         MK835985         MK835986         MK835986         MK835987         MK835986         MK835986         MK835986         MK835986         MK835986         MK835987         MK835981         MK835986         MK835986         MK835986         MK835986         MK835987 <td>Atractus badius</td> <td>MNRJ 26716</td> <td></td> <td></td> <td>MK835890</td> <td></td> <td>MK835979</td> <td></td> | Atractus badius      | MNRJ 26716                 |           |              | MK835890  |              | MK835979      |                |
| Arractus badius         MNRJ 26718         MH790477         MK835865         MK835892         MK835982         MK835982           Arractus dapsilis         MNRJ 16794         MH790479         MK835883         MK835925         MK835982           Arractus dapsilis         MNRJ 16794         MH790481         MK835892         MK835925         MK835925           Arractus dapsilis         MNRJ 16802         MH790481         MK835895         MK835982         MK835982           Arractus elaps         QCAZ 5077         MK835866         MK835986         MK835987         MK835988           Arractus elaps         QCAZ 5574         MK835866         MK835987         MK835988         MK835983           Arractus elaps         QCAZ 11581         MK835898         MK835998         MK835993           Arractus flammigerus         AF 3546         MH790488         MK835890         MK835992         MK835991           Arractus flammigerus         NR12 26710         MH790488         MK835893         MK835993         MK835993           Arractus flammigerus         NR12 26710         MH790490         MK835900         MK835991         MK835994           Arractus flammigerus         NR12 26710         MH790490         MK835901         MK835996         MK835995                                                                                                                                                                                                      | Atractus badius      | MNRJ 26717                 | MH790476  | MK835864     | MK835891  |              | MK835980      | MK835948       |
| Arractus boimirim         MPEG 21233         MH790478         MK835866         MK835892         MK835892           Arractus dapsilis         MNR1 16796         MH790480         MK835892         MK835920         MK835920         MK835920           Arractus dapsilis         MNR1 16796         MH790480         MK835895         MK835920         MK835920         MK835992           Arractus elaps         QCAZ 5472         MK835867         MK835885         MK835986         MK835986           Arractus elaps         QCAZ 5574         MK835867         MK835887         MK835987         MK835987           Arractus elaps         QCAZ 15181         MK835889         MK835983         MK835983         MK835989           Arractus glammigerus         AF 1151         MH790483         MK835871         MK835990         MK835990           Arractus glammigerus         AF 3721         MH790488         MK835872         MK835900         MK835991           Arractus glammigerus         CAHE 9         MH790488         MK835870         MK835902         MK835993           Arractus glammigerus         CAHE 9         MH790494         MK835900         MK835993         MK835993           Arractus glammigerus         NR12 6710         MH7904949         MK835901         MK8359                                                                                                                                                                                             | Atractus badius      | MNRJ 26718                 | MH790477  | MK835865     | MK835892  |              | MK835981      | MK835949       |
| Arractus dapsilis         MNRI 16794         MH790479         MK835893         MK835925         MK835925         MK835925           Arractus dapsilis         MNRI 16760         MH790481         MK835892         MK835925         MK835925           Arractus elaps         QCAZ 5077         MK835895         MK835985         MK835985           Arractus elaps         QCAZ 5574         MK835866         MK835985         MK835985           Arractus elaps         QCAZ 5574         MK835868         MK835897         MK835987           Arractus elaps         QCAZ 14069         MK835898         MK835993         MK835993           Arractus flammigerus         AF 1151         MH790484         MK835890         MK835991         MK835991           Arractus flammigerus         AF 321         MH790484         MK835870         MK835929         MK835991           Arractus flammigerus         AF 321         MH790484         MK835870         MK835992         MK835991           Arractus flammigerus         NR12 6710         MH790498         MK835870         MK835991         MK835992           Arractus flammigerus         NR12 6720         MH790498         MK835870         MK835991         MK835993           Arractus flaffrons         CHUNB 47071         MK8                                                                                                                                                                                                     | Atractus boimirim    | MPEG 21233                 | MH790478  | MK835866     |           |              | MK835982      |                |
| Arractus dapsilis         MNRJ 16796         MH790480         MK835894         MK835926         MK835951           Arractus elaps         QCAZ 5472         MK835895         MK835953         MK835953           Arractus elaps         QCAZ 5474         MK835866         MK835986         MK835954           Arractus elaps         QCAZ 7454         MK835867         MK835897         MK835986           Arractus elaps         QCAZ 14069         MK835898         MK835988         MK835984           Arractus elaps         QCAZ 14069         MK835890         MK835992         MK835994           Arractus flammigerus         AF 1151         MH790484         MK835890         MK835900         MK835992           Arractus flammigerus         AF 3721         MH790484         MK835871         MK835901         MK835930         MK835992           Arractus flammigerus         AF 3721         MH790484         MK835872         MK835930         MK835992           Arractus flammigerus         MNJ 26719         MH790487         MK835901         MK835904         MK835994           Arractus laitfrons         CHUNB 47013         MH790490         MK835904         MK835991         MK835993           Arractus laitfrons         CHUNB 47134         MH790490         MK83                                                                                                                                                                                                     | Atractus dapsilis    | MNRJ 16794                 | MH790479  |              | MK835893  | MK835925     |               | MK835950       |
| Arractus dapsilis         MINB 16802         MH 790481         MK835952         MK835952         MK835952           Arractus elaps         QCAZ 5077         K835985         MK835953           Arractus elaps         QCAZ 5574         MK835866         MK835986           Arractus elaps         QCAZ 5574         MK835886         MK835987           Arractus elaps         QCAZ 15151         MK835988         MK835988           Arractus elaps         QCAZ 11581         MK835898         MK835989           Arractus flammigerus         AF 3546         MH790483         MK835809         MK835920           Arractus flammigerus         AF 3721         MH790486         MK835901         MK835920           Arractus flammigerus         AF 3721         MH790486         MK835903         MK835903           Arractus flammigerus         MR12 26719         MH790486         MK835903         MK835903           Arractus laitfroms         CHUNB 47070         MK835905         MK835904           Arractus laitfroms         CHUNB 47070         MK835905         MK835905           Arractus laitfroms         MPEG 22630         MH790492         MK835901         MK835905           Arractus laitfroms         MPEG 22630         MH790492         MK835901                                                                                                                                                                                                                       | Atractus dapsilis    | MNRJ 16796                 | MH790480  |              | MK835894  | MK835926     |               | MK835951       |
| Atractus elaps         QCAZ 507         MK835983           Atractus elaps         QCAZ 5574         MK835867         MK835897           Atractus elaps         QCAZ 7554         MK835887         MK835986           Atractus elaps         QCAZ 7454         MK835887         MK835987           Atractus elaps         QCAZ 11581         MK835897         MK835983           Atractus flammigerus         AF 1151         MH790483         MK835890         MK835992           Atractus flammigerus         AF 321         MH790484         MK835800         MK835930         MK835991           Atractus flammigerus         AF 3721         MH790485         MK835871         MK835901         MK835930         MK835992           Atractus flammigerus         AF 3721         MH790485         MK835872         MK835901         MK835930         MK835993           Atractus flammigerus         MKR1 26719         MH790487         MK835903         MK835930         MK835993           Atractus latifrons         CHUNB 47070         MH790490         MK835906         MK835996         MK835995           Atractus latifrons         CHUNB 47113         MH790490         MK835906         MK835995         MK835956           Atractus latifrons         CHUNB 47114                                                                                                                                                                                                                      | Atractus dapsilis    | MNRJ 16802                 | MH790481  |              | MK835895  | MK835927     |               | MK835952       |
| Atractus elaps         QCAZ 5574         MK835867         MK835986         MK835988         MK835989         MK835999         MK835991         MK835991                                                                                                                            | Atractus elaps       | QCAZ 5077                  |           |              |           |              | 1 11/02 500 5 | MK835953       |
| Atractus elaps         QCAZ 53/4         MK83586/         MK83586/         MK835986         MK835986         MK835986           Atractus elaps         QCAZ 7454         MK835888         MK835887         MK835988         MK835987           Atractus elaps         QCAZ 1151         MK835889         MK835988         MK835988         MK835988           Atractus flammigerus         AF 1151         MH790483         MK835870         MK835900         MK835929         MK835990           Atractus flammigerus         AF 321         MH790485         MK835870         MK835900         MK835992         MK835991           Atractus flammigerus         MNRJ 26710         MH790485         MK835872         MK835901         MK835992         MK835992           Atractus flammigerus         MNRJ 26710         MH790488         MK835800         MK835904         MK835904           Atractus latifrons         CHUNB 47070         MH790490         MK835906         MK835996         MK835994           Atractus latifrons         MH2 622630         MH790491         MK835906         MK835996         MK835956           Atractus latifrons         MH2 6224590         MK835907         MK835991         MK835955         MK835956           Atractus latifrons         MH2 6224590                                                                                                                                                                                                  | Atractus elaps       | QCAZ 5492                  |           | 1 4402 50 67 | 10000000  |              | MK835985      | 1 1100 50 5 4  |
| Atractus elaps         QCAZ (24)         MK835868         MK835887         MK835987           Atractus elaps         QCAZ 11581         MK835898         MK835988         MK835988           Atractus elaps         QCAZ 11681         MK835989         MK835988         MK835988           Atractus flammigerus         AF 1151         MH790484         MK835809         MK835992         MK835989           Atractus flammigerus         AF 3721         MH790484         MK835871         MK835901         MK835991           Atractus flammigerus         AF 3721         MH790486         MK835871         MK835901         MK835993           Atractus flammigerus         MNRJ 26719         MH790488         MK835903         MK835903         MK835993           Atractus latifrons         CHUNB 47070         MH790490         MK835906         MK835906           Atractus latifrons         CHUNB 47071         MK835871         MK835906         MK835995           Atractus latifrons         MPEG 22630         MH790492         MK835871         MK835906           Atractus latifrons         MPEG 22630         MH790493         MK8358910         MK835995           Atractus latifrons         MPEG 22630         MH790507         MK8359916         MK835995           <                                                                                                                                                                                                         | Atractus elaps       | QCAZ 55/4                  |           | MK835867     | MK835896  |              | MK835986      | MK835954       |
| Atractus elaps         QCAZ 11581         MK835985         MK835985         MK835985           Atractus elaps         QCAZ 14069         MK8358983         MK835984           Atractus flammigerus         AF 1151         MH790483         MK835870         MK835920         MK835990           Atractus flammigerus         AF 3721         MH790485         MK835870         MK835900         MK835990           Atractus flammigerus         AF 3721         MH790486         MK835871         MK835900         MK835993           Atractus flammigerus         AF 3721         MH790486         MK835871         MK835902         MK835993           Atractus flammigerus         MNRJ 26719         MH790486         MK835873         MK835904         MK835993           Atractus flammigerus         MNRJ 26710         MH790490         MK835904         MK835904           Atractus latifrons         CHUNB 47134         MH790491         MK835906         MK835906           Atractus latifrons         CHUNB 47134         MH790491         MK835906         MK835906           Atractus latifrons         MPEG 24590         MK835906         MK835908         MK835995           Atractus latifrons         MPEG 24500         MH790506         MK835911         MK835935                                                                                                                                                                                                                | Atractus elaps       | QCAZ 7454                  |           | MK835868     | MK835897  |              | MK835987      | 1 11/02 50 5 5 |
| Atractus elaps         QCAZ 14069         MK835983           Atractus flammigerus         AF 1151         MH790483         MK835869         MK835990           Atractus flammigerus         AF 3546         MH790484         MK835870         MK835929         MK835990           Atractus flammigerus         AF 3721         MH790485         MK835871         MK835901         MK835991           Atractus flammigerus         AF 3721         MH790485         MK835871         MK835901         MK835992           Atractus flammigerus         CAHE 9         MH790487         MK835903         MK835993         MK835993           Atractus flammigerus         MNRJ 26719         MH790487         MK835904         MK835904           Atractus latifrons         CHUNB 47071         MK835905         MK835905         MK835907           Atractus latifrons         MPEG 22630         MH790492         MK835871         MK835908         MK835996           Atractus latifrons         MPEG 22630         MH790492         MK835871         MK835910         MK835996           Atractus latifrons         MPEG 22630         MH790506         MK835910         MK835935         MK835957           Atractus major         QCAZ 4691         MH790506         MK835910         MK835935                                                                                                                                                                                                      | Atractus elaps       | QCAZ 8217                  |           |              | MK835898  |              | MK835988      | MK835955       |
| Alractus laps         QCAZ 14069         MK83589         MK835899         MK835894           Alractus flammigerus         AF 1151         MH790483         MK835870         MK835890         MK835990           Alractus flammigerus         AF 3721         MH790484         MK835871         MK835900         MK835990           Alractus flammigerus         CAHE 9         MH790486         MK835872         MK835902         MK835991           Alractus flammigerus         MNRJ 26719         MH790486         MK835873         MK835901         MK835993           Alractus flammigerus         MNRJ 26719         MH790486         MK835873         MK835903         MK835994           Alractus latifrons         CHUNB 47070         MH790490         MK835905         MK835905           Alractus latifrons         CHUNB 47135         MH790491         MK835870         MK835906           Alractus latifrons         MPEG 22630         MH790493         MK835876         MK835900         MK835995         MK835956           Alractus latifrons         MTR 19392         MH790506         MK835910         MK835935         MK835956           Alractus latifrons         MTR 19392         MH790506         MK835913         MK835935         MK8359563           Alractus major                                                                                                                                                                                                     | Atractus elaps       | QCAZ 11581                 |           |              |           |              | MK835983      |                |
| Atractus Jammigerus         AF 1511         MH /90483         MK835809         MK83599         MK835929         MK835989           Atractus Jammigerus         AF 3546         MH790484         MK835870         MK835900         MK835990           Atractus Jammigerus         AF 3721         MH790485         MK835870         MK835900         MK835990           Atractus Jammigerus         AF 3721         MH790484         MK835872         MK835900         MK835990           Atractus Jammigerus         MNRJ 26719         MH790487         MK835901         MK835993         MK835993           Atractus Jainforms         CHUNB 47070         MH790490         MK835905         MK835905         MK835996           Atractus latifrons         CHUNB 47071         MH790492         MK835875         MK835906         MK835996           Atractus latifrons         MPEG 22630         MH790492         MK835876         MK835910         MK835995           Atractus latifrons         MTR 19392         MH790494         MK835871         MK835935         MK835955           Atractus major         QCAZ 4691         MH790506         MK835911         MK835935         MK835963           Atractus major         QCAZ 4933         MH790508         MK835913         MK835937         M                                                                                                                                                                                             | Atractus elaps       | QCAZ 14069                 | 101700402 | 10000000     | 1000000   | 10000000     | MK835984      |                |
| Atractus Jianningerus         AF 3346         MH /90484         MK835871         MK835901         MK835990         MK835990           Atractus Jianningerus         CAHE 9         MH790485         MK835871         MK835901         MK835991         MK835991           Atractus Jianningerus         MNRJ 26719         MH790486         MK835871         MK835901         MK835992         MK835992           Atractus Jianningerus         MNRJ 26710         MH790486         MK835873         MK835903         MK835993           Atractus Jatifrons         CHUNB 47070         MH790498         MK835873         MK835907           Atractus latifrons         CHUNB 47134         MH790492         MK835876         MK835907           Atractus latifrons         CHUNB 47135         MH790492         MK835876         MK835907           Atractus latifrons         MPEG 24590         MK835876         MK835910         MK835995         MK835957           Atractus latifrons         MTR 19392         MH790498         MK835871         MK835930         MK835935           Atractus major         QCAZ 4691         MH790508         MK835913         MK835937         MK836002           Atractus major         QCAZ 7881         MH790508         MK835913         MK835993         MK835993                                                                                                                                                                                         | Atractus flammigerus | AF 1151                    | MH790483  | MK835869     | MK835899  | MK835928     | MK835989      |                |
| Alractus Jiammigerus         AF 3/21         MH /90485         MK8358/1         MK835901         MK835991         MK835991           Alractus Jiammigerus         MNRJ 26719         MH790486         MK835872         MK835901         MK835992           Atractus Jiammigerus         MNRJ 26719         MH790486         MK835873         MK835901         MK835992           Atractus Jatifrons         CHUNB 47070         MH790490         MK835906         MK835906           Atractus latifrons         CHUNB 47071         MK835875         MK835906         Atractus latifrons         MPEG 22630           Atractus latifrons         MPEG 24590         MK835875         MK835911         MK835994         MK835956           Atractus latifrons         MTR 19392         MH790498         MK835911         MK835994         MK835957           Atractus major         QCAZ 4691         MH790506         MK835913         MK835937         MK835937           Atractus major         QCAZ 1891         MH790509         MK835871         MK835931         MK835998           Atractus major         QCAZ 1887         MH790509         MK835914         MK835993         MK835998           Atractus major         QCAZ 1887         MH790509         MK835916         MK835991                                                                                                                                                                                                           | Atractus flammigerus | AF 3546                    | MH790484  | MK835870     | MK835900  | MK835929     | MK835990      |                |
| Alractus Jammigerus         CAHE 9         MH /90486         MK8358/2         MK835902         MK835902           Alractus Jammigerus         MNRJ 26719         MH790487         MK835903         MK835993           Atractus Jammigerus         MNRJ 26720         MH790488         MK835903         MK835993           Atractus Jatifrons         CHUNB 47071         MK835906         MK835906           Atractus latifrons         CHUNB 47135         MH790490         MK835870           Atractus latifrons         CHUNB 47135         MH790491         MK835806           Atractus latifrons         MPEG 22630         MK835876         MK835900           Atractus latifrons         MPEG 24590         MK835876         MK835910         MK835995           Atractus latifrons         MPEG 24690         MK835871         MK835934         MK835993           Atractus major         QCAZ 4691         MH790506         MK835913         MK835935         MK835935           Atractus major         QCAZ 7881         MH790509         MK835913         MK835937         MK835937           Atractus major         QCAZ 11565         MH790501         MK835916         MK835993         MK835996           Atractus major         QCAZ 11565         MH790501         MK835916                                                                                                                                                                                                            | Atractus flammigerus | AF 3/21                    | MH790485  | MK835871     | MK835901  | MK835930     | MK835991      |                |
| Alractus Jammigerus         MINRJ 26/19         MI/9048/         MK83597         MK835931         MK835933           Atractus Jaifrons         CHUNB 47070         MH790490         MK835905         MK835905           Atractus Jaifrons         CHUNB 47071         MK835905         MK835905           Atractus Jaifrons         CHUNB 47135         MH790492         MK835906           Atractus Jaifrons         CHUNB 47135         MH790492         MK835906           Atractus Jaifrons         MPEG 22630         MH790493         MK835906           Atractus Jaifrons         MPEG 24590         MK835876         MK835910         MK835996           Atractus Jaifrons         MTR 19392         MH790498         MK835911         MK835936           Atractus major         QCAZ 4691         MH790506         MK835913         MK835936           Atractus major         QCAZ 5811         MH790508         MK835913         MK835937         MK835937           Atractus major         QCAZ 1875         MH790501         MK835914         MK835937         MK835998           Atractus major         QCAZ 11596         MH790501         MK835916         MK835991         MK835999           Atractus major         QCAZ 11744         MH790505         MK835916         M                                                                                                                                                                                                             | Atractus flammigerus | CAHE 9                     | MH/90486  | MK8358/2     | MK835902  | MIZ025021    | MK835992      |                |
| Alractus Jainmingerus         MIKB 26/20         MIT/90488         MK835913         MK835932         MK835932         MK835934           Atractus Jaiffons         CHUNB 47070         MIT90490         MK835906         MK835906           Atractus Jaiffons         CHUNB 47134         MIT90491         MK835906         MK835906           Atractus Jaiffons         CHUNB 47135         MIT90492         MK835875         MK835906           Atractus Jaiffons         MPEG 22630         MIT90493         MK835900         MK835995         MK835975           Atractus Jaiffons         MPEG 24590         MK835910         MK835996         MK835957           Atractus Jaiffons         MTR 1932         MH790494         MK835910         MK835910         MK835996           Atractus major         QCAZ 4691         MH790506         MK835912         MK835936         MK835903           Atractus major         QCAZ 7881         MH790500         MK835914         MK835937         MK835993           Atractus major         QCAZ 11565         MH790500         MK835915         MK835913         MK835993           Atractus major         QCAZ 11819         MH790503         MK835915         MK835916         MK835906           Atractus major         QCAZ 11819         MH7                                                                                                                                                                                                     | Atractus flammigerus | MNRJ 26/19                 | MH/9048/  | 1000000000   | 10000000  | MK835931     | MK835993      |                |
| Alractus latifrons         CHUNB 4/070         MH/90490         MK835904           Atractus latifrons         CHUNB 47131         MH790491         MK835905           Atractus latifrons         CHUNB 47133         MH790492         MK835906           Atractus latifrons         CHUNB 47135         MH790492         MK835907           Atractus latifrons         MPEG 22630         MH790493         MK835908           Atractus latifrons         MPEG 24590         MK835911         MK835996           Atractus major         MNRJ 26126         MH790498         MK835911         MK835936           Atractus major         QCAZ 4691         MH790506         MK835912         MK835936         MK836002           Atractus major         QCAZ 7881         MH790509         MK835914         MK835936         MK835963           Atractus major         QCAZ 11565         MH790501         MK835876         MK835914         MK835997           Atractus major         QCAZ 11565         MH790501         MK835875         MK835998         MK835997           Atractus major         QCAZ 11565         MH790503         MK835916         MK835905           Atractus major         QCAZ 11744         MH790504         MK835916         MK836000           Atractus                                                                                                                                                                                                                     | Atractus flammigerus | MNKJ 26/20                 | MH/90488  | MK8358/3     | MK835903  | MK835932     | MK835994      |                |
| Atractus latifrons         CHUNB 47/071         MK835905           Atractus latifrons         CHUNB 47135         MH790491         MK835906           Atractus latifrons         MPEG 22630         MH790492         MK835908           Atractus latifrons         MPEG 22630         MH790493         MK835909           Atractus latifrons         MPEG 22630         MH790494         MK835909           Atractus latifrons         MPEG 22630         MH790494         MK835909           Atractus latifrons         MTR 19392         MH790494         MK835910         MK835995           Atractus major         MRR 26126         MH790498         MK835911         MK835935           Atractus major         QCAZ 4691         MH790506         MK835912         MK835936         MK835903           Atractus major         QCAZ 5891         MH790507         MK835913         MK835937         MK836003         MK835963           Atractus major         QCAZ 7881         MH790508         MK835878         MK835937         MK835997           Atractus major         QCAZ 11565         MH790501         MK835913         MK835998         MK835998           Atractus major         QCAZ 11849         MH790503         MK835915         MK836001         MK835964                                                                                                                                                                                                                       | Atractus latifrons   | CHUNB 4/0/0<br>CHUND 47071 | MH/90490  |              | MK835904  |              |               |                |
| Atractus latifrons         CHONB 47134         MH790491         MK835906           Atractus latifrons         CHUNB 47135         MH790492         MK835874         MK835907           Atractus latifrons         MPEG 22630         MH790493         MK835875         MK835908           Atractus latifrons         MPEG 22630         MH790494         MK835875         MK835907           Atractus latifrons         MTR 19392         MH790494         MK835876         MK835910         MK835996           Atractus latifrons         MTR 19392         MH790506         MK835911         MK835934         MK835935           Atractus major         QCAZ 4691         MH790506         MK835913         MK835936         MK835936           Atractus major         QCAZ 5891         MH790508         MK835877         MK835913         MK835936         MK835960           Atractus major         QCAZ 1881         MH790509         MK835914         MK835937         MK835997           Atractus major         QCAZ 11565         MH790501         MK835878         MK835933         MK835997           Atractus major         QCAZ 11744         MH790502         MK835933         MK836000         MK835961           Atractus major         QCAZ 14321         MH790511         MK83591                                                                                                                                                                                                     | Atractus latifrons   | CHUNB 4/0/1<br>CHUND 47124 | MI1700401 |              | MK835905  |              |               |                |
| Atractus latijrons         CHUNB 4/133         MH 190492         MK8358/1         MK83590/           Atractus latijrons         MPEG 22630         MH790493         MK835875         MK835909         MK835995         MK835956           Atractus latijrons         MTR 19392         MH790494         MK835876         MK835910         MK835996         MK835957           Atractus major         QCAZ 4691         MH790498         MK835911         MK835935         MK835935           Atractus major         QCAZ 4691         MH790506         MK835913         MK835936         MK836002           Atractus major         QCAZ 7881         MH790509         MK835913         MK835937         MK836004         MK835963           Atractus major         QCAZ 11565         MH790501         MK835878         MK835997         MK835998           Atractus major         QCAZ 11566         MH790502         MK835915         MK835999         MK835996           Atractus major         QCAZ 11566         MH790503         MK835915         MK8359918         MK835999           Atractus major         QCAZ 13819         MH790504         MK835916         MK836001         MK835966           Atractus major         QCAZ 14321         MH790526         MK835916         MK836001                                                                                                                                                                                                       | Atractus latifrons   | CHUNB 4/134<br>CHUND 47125 | MH/90491  | MIZ025074    | MK835906  |              |               |                |
| Atractus latijrons         MIPEG 22630         MIR 190493         MIR633675         MIR633908           Atractus latifrons         MPEG 24590         MK835900         MK835905         MK835956           Atractus latifrons         MTR 19392         MH790494         MK835876         MK835910         MK835995         MK835956           Atractus latifrons         MIRJ 26126         MH790498         MK835911         MK835934         MK835956           Atractus major         QCAZ 4691         MH790506         MK835913         MK835936         MK836002           Atractus major         QCAZ 4993         MH790507         MK835914         MK835936         MK835963           Atractus major         QCAZ 7881         MH790509         MK835914         MK835937         MK836004         MK835963           Atractus major         QCAZ 11565         MH790501         MK835878         MK835997         MK835998           Atractus major         QCAZ 11566         MH790502         MK835915         MK835906         MK835961           Atractus major         QCAZ 14321         MH790505         MK835917         MK836000         MK835961           Atractus major         QCAZ 14321         MH790526         MK835917         MK836007         MK836001                                                                                                                                                                                                                  | Atractus latificana  | CHUNB 4/135                | MH/90492  | MK855874     | MK855907  |              |               |                |
| Atractus latijrons         MIREG 24390         MIR835909         MIR835990         MIR835995         MIR835995           Atractus latijrons         MIRJ 26126         MH790494         MK835876         MK835910         MK835996         MK835995           Atractus major         QCAZ 4691         MH790506         MK835912         MK835935         MK835957           Atractus major         QCAZ 4993         MH790506         MK835913         MK835935         MK835963           Atractus major         QCAZ 7881         MH790509         MK835913         MK835937         MK836004         MK835963           Atractus major         QCAZ 7881         MH790509         MK835914         MK835997         MK8359963           Atractus major         QCAZ 11556         MH790501         MK835878         MK835997         MK835998           Atractus major         QCAZ 11744         MH790502         MK835915         MK835998         MK835960           Atractus major         QCAZ 11744         MH790505         MK835915         MK836000         MK835961           Atractus major         QCAZ 14321         MH790505         MK835916         MK836006         MK835964           Atractus major         UFAC-RB 532         MH790527         MK835916         MK836007                                                                                                                                                                                                       | Atractus latificana  | MPEG 22030                 | MH/90493  | MK8338/3     | MK855908  |              | MIZ 925005    | MIZ 92505(     |
| Atractus major       MTR 19592       MTP90494       MTR35970       MTR35970       MTR35970       MTR35970       MTR35957         Atractus major       QCAZ 4691       MT90506       MK835912       MK835936       MK835935         Atractus major       QCAZ 4993       MH790506       MK835913       MK835936       MK835936         Atractus major       QCAZ 7881       MH790507       MK835913       MK835937       MK836003       MK835962         Atractus major       QCAZ 7881       MH790509       MK835914       MK835937       MK836004       MK835963         Atractus major       QCAZ 7881       MH790509       MK835914       MK835997       MK835998         Atractus major       QCAZ 11565       MH790501       MK835878       MK835998       MK835999         Atractus major       QCAZ 11744       MH790503       MK835915       MK835900       MK835960         Atractus major       QCAZ 14321       MH790505       MK835917       MK836001       MK835961         Atractus major       UFAC-RB 532       MH790527       MK835918       MK835918       MK836007         Atractus schach       AF 1716       MH790528       MK835919       MK835939       MK836010       MK835966         Atractus tartarus                                                                                                                                                                                                                                                                        | Atractus latifions   | MPEG 24390<br>MTD 10202    | MH700404  | MV 925976    | MK 835909 |              | MK 835995     | MK835950       |
| Atractus major       MiRK3 20120       MiH790535       MiRk33511       MiRk353511       MiRk353511         Atractus major       QCAZ 4691       MiH790506       MK835912       MK835935         Atractus major       QCAZ 4993       MiH790506       MK835913       MK835936         Atractus major       QCAZ 5891       MH790508       MK835914       MK835936       MK836003       MK835962         Atractus major       QCAZ 7881       MH790500       MK835914       MK835937       MK836004       MK835963         Atractus major       QCAZ 11565       MH790500       MK835878       MK835993       MK835997         Atractus major       QCAZ 11565       MH790501       MK835878       MK835933       MK835999         Atractus major       QCAZ 11596       MH790503       MK835915       MK835933       MK836000       MK835961         Atractus major       QCAZ 14321       MH790504       MK835915       MK836005       MK836001       MK835961         Atractus major       QCAZ 14321       MH790526       MK835916       MK836006       MK835961         Atractus riveroi       MNRJ 26087       MH790528       MK835919       MK8359393       MK836010       MK8359661         Atractus tartarus       MPEG 23928                                                                                                                                                                                                                                                                    | Atractus major       | MNDI 26126                 | MH700408  | WIK055070    | MK 835910 |              | WIK655990     | MK 825059      |
| Atractus major       QCAZ 4991       MH190500       MK835912       MK835934       MK835002         Atractus major       QCAZ 4993       MH190507       MK835913       MK835936       MK836003       MK835962         Atractus major       QCAZ 7881       MH790509       MK835914       MK835937       MK836004       MK835963         Atractus major       QCAZ 8187       MH790510       MK835914       MK835937       MK835997         Atractus major       QCAZ 11565       MH790501       MK835878       MK835998         Atractus major       QCAZ 11565       MH790502       MK835933       MK835999         Atractus major       QCAZ 11744       MH790503       MK835933       MK836000       MK835961         Atractus major       QCAZ 13819       MH790505       MK835915       MK836001       MK835961         Atractus major       UFAC-RB 532       MH790511       MK835879       MK835915       MK836006       MK835964         Atractus riveroi       MNI 26087       MH790526       MK835916       MK836007       MK836007         Atractus schach       AF 1716       MH790527       MK835880       MK835918       MK836010       MK835964         Atractus tartarus       MPEG 23928       MH790528       MK83591                                                                                                                                                                                                                                                                   | Atractus major       | OCA7.4601                  | MH700506  |              | MK 835911 | MV 925024    | MV 926002     | WIK055950      |
| Atractus major       QCAZ 5891       MH790508       MK835877       MK835913       MK835935         Atractus major       QCAZ 5891       MH790508       MK835877       MK835913       MK835936       MK836004       MK835963         Atractus major       QCAZ 7881       MH790509       MK835914       MK835937       MK836004       MK835963         Atractus major       QCAZ 1887       MH790500       MK835970       MK835997       MK835998         Atractus major       QCAZ 11596       MH790502       MK835998       MK835999       MK835999         Atractus major       QCAZ 11744       MH790503       MK835913       MK835999       MK835999         Atractus major       QCAZ 14321       MH790504       MK835915       MK836000       MK835961         Atractus major       QCAZ 14321       MH790526       MK835916       MK836005       MK836005         Atractus riveroi       MNRJ 26087       MH790527       MK835810       MK835918       MK835918       MK835918       MK835918       MK835916       MK835916       MK835961       MK835966                                                                                                                                                                                                                                                    | Atractus major       | QCAZ 4091                  | MH790507  |              | WIK055912 | MK 835035    | MIK650002     |                |
| Atractus major       QCAZ 5351       MIR790505       MIR853577       MIR853573       MIR853593       MIR835940       MIR835940       MIR835940       MIR835946       Atractus tartarus major atractus torquatus mission       MIR835946       MIR835945       MIR835945       MIR835945       MIR835946                                                                                                                                                 | Atractus major       | QCAZ 4993                  | MH700508  | MK 835877    | MK 835013 | MK835036     | MK 836003     | MK 835062      |
| Atractus major       QCAZ 8187       MH790510       MK835914       MK835937       MK835937       MK835937         Atractus major       QCAZ 8187       MH790510       MK835878       MK835997         Atractus major       QCAZ 11555       MH790502       MK835998         Atractus major       QCAZ 11744       MH790503       MK835999         Atractus major       QCAZ 13819       MH790504       MK835933         Atractus major       QCAZ 14321       MH790505       MK835915         Atractus major       QCAZ 14321       MH790506       MK835916         Atractus major       UFAC-RB 532       MH790510       MK835916         Atractus major       UFAC-RB 532       MH790526       MK835916       MK836000         Atractus schach       AF 1716       MH790527       MK835918       MK836007         Atractus tartarus       MPEG 23928       MH790528       MK835918       MK835939       MK836010       MK835966         Atractus torquatus       AF 2281       MH790531       MK835881       MK835939       MK836010       MK835966         Atractus torquatus       MPEG 21143       MH790533       MK835921       MK835940       MK836012       MK835968         Atractus torquatus       MPEG 23686                                                                                                                                                                                                                                                                                | Atractus major       | QCAZ 7881                  | MH790500  | WIK055077    | MK 83501/ | MK 835037    | MK 836004     | MK 835063      |
| Atractus major       QCAZ 1150       MH790510         Atractus major       QCAZ 11565       MH790501       MK835878       MK835997         Atractus major       QCAZ 11596       MH790502       MK835998         Atractus major       QCAZ 11744       MH790503       MK835999         Atractus major       QCAZ 13819       MH790504       MK835933       MK836000       MK835960         Atractus major       QCAZ 14321       MH790505       MK835915       MK836001       MK835961         Atractus major       UFAC-RB 532       MH790511       MK835879       MK835915       MK836005         Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK836007         Atractus tartarus       MPEG 23928       MH790528       MK835918       MK835918         Atractus tartarus       MPEG 23931       MH790530       MK835919       MK835939       MK836001       MK835966         Atractus torquatus       AF 2281       MH790531       MK835881       MK835940       MK836010       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835921       MK835941       MK836012       MK835968         Atractus torquatus       MPEG 23686       MH790533       MK835923       MK836014 </td <td>Atractus major</td> <td>QCAZ 8187</td> <td>MH790510</td> <td></td> <td>WIK055714</td> <td>WIIX0333337</td> <td>WIIX050004</td> <td>WIIX055505</td>                                                                                                        | Atractus major       | QCAZ 8187                  | MH790510  |              | WIK055714 | WIIX0333337  | WIIX050004    | WIIX055505     |
| Atractus major       QCAZ 11505       MH790501       MK835976       MK835976         Atractus major       QCAZ 11596       MH790502       MK835998         Atractus major       QCAZ 11744       MH790503       MK835999         Atractus major       QCAZ 11819       MH790504       MK835933       MK835960         Atractus major       QCAZ 14321       MH790505       MK835915       MK836000       MK835961         Atractus major       UFAC-RB 532       MH790511       MK835879       MK835915       MK836005       MK835964         Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK836007       MK836007         Atractus schach       AF 1716       MH790528       MK835918       MK835918       MK835918         Atractus tartarus       MPEG 23928       MH790530       MK835919       MK835938       MK836009       MK835965         Atractus torquatus       AF 2281       MH790530       MK835919       MK835930       MK836010       MK835966         Atractus torquatus       MPEG 21143       MH790531       MK835920       MK835940       MK836011       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835921       MK836013       MK835968 <t< td=""><td>Atractus major</td><td>OCAZ 11565</td><td>MH790501</td><td>MK 835878</td><td></td><td></td><td>MK 835997</td><td></td></t<>                                                                                                                                        | Atractus major       | OCAZ 11565                 | MH790501  | MK 835878    |           |              | MK 835997     |                |
| Atractus major       QCAZ 11744       MH790502       MK835999       MK835999         Atractus major       QCAZ 13819       MH790503       MK835933       MK835990       MK835950         Atractus major       QCAZ 14321       MH790505       MK835915       MK836001       MK835961         Atractus major       UFAC-RB 532       MH790511       MK835879       MK835915       MK836005         Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK836006       MK835964         Atractus schach       AF 1716       MH790527       MK835880       MK835917       MK836007         Atractus tartarus       MPEG 23928       MH790528       MK835918       MK835938       MK836010       MK835966         Atractus tartarus       MPEG 21143       MH790531       MK835881       MK835940       MK835911       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835920       MK835941       MK836012       MK835968         Atractus torquatus       MPEG 23686       MH790533       MK835922       MK836013       MK835969         Atractus torquatus       MTR 19069       MH790534       MK835923       MK835942       MK836015       MK835971         Atractus torquatus       MTR 19408<                                                                                                                                                                                                                                                          | Atractus major       | QCAZ 11505                 | MH790502  | WIX055070    |           |              | MK 835998     |                |
| Atractus major       QCAZ 13819       MH790504       MK835933       MK835900         Atractus major       QCAZ 13819       MH790504       MK835933       MK835900         Atractus major       QCAZ 14321       MH790505       MK835915       MK836001       MK835961         Atractus major       UFAC-RB 532       MH790511       MK835879       MK835915       MK836005       MK835964         Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK836006       MK835964         Atractus schach       AF 1716       MH790527       MK835880       MK835917       MK836007       MK835966         Atractus tartarus       MPEG 23928       MH790529       MK835918       MK835939       MK836010       MK835965         Atractus tartarus       MPEG 23931       MH790530       MK835920       MK835939       MK836010       MK835966         Atractus torquatus       AF 2281       MH790531       MK835881       MK835940       MK836011       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835921       MK835941       MK836012       MK835968         Atractus torquatus       MTR 19069       MH790534       MK835882       MK835942       MK836015       MK835970 <td< td=""><td>Atractus major</td><td>OCAZ 11744</td><td>MH790502</td><td></td><td></td><td></td><td>MK 835999</td><td>MK 835959</td></td<>                                                                                                                               | Atractus major       | OCAZ 11744                 | MH790502  |              |           |              | MK 835999     | MK 835959      |
| Atractus major       QCAZ 14321       MH790501       MK835955       MK836005         Atractus major       QCAZ 14321       MH790505       MK835915       MK836001       MK835961         Atractus major       UFAC-RB 532       MH790511       MK835879       MK835915       MK836005       MK835961         Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK836006       MK835964         Atractus schach       AF 1716       MH790527       MK835880       MK835917       MK836007       MK835965         Atractus tartarus       MPEG 23928       MH790529       MK835918       MK835918       MK835910       MK835900       MK835966         Atractus tartarus       MPEG 21143       MH790530       MK835920       MK835939       MK836010       MK835966         Atractus torquatus       MPEG 21143       MH790531       MK835881       MK835940       MK836012       MK835967         Atractus torquatus       MPEG 23686       MH790533       MK835921       MK835941       MK836012       MK835968         Atractus torquatus       MTR 19069       MH790534       MK835882       MK835942       MK836015       MK835971         Atractus trefauti       MNRJ 26709       MH790536       MK835883       MK835924 <td>Atractus major</td> <td>OCAZ 13819</td> <td>MH790504</td> <td></td> <td></td> <td>MK 835933</td> <td>MK 836000</td> <td>MK 835960</td>                                                                                                           | Atractus major       | OCAZ 13819                 | MH790504  |              |           | MK 835933    | MK 836000     | MK 835960      |
| Atractus major       QCAD (12) (12) (11) (11) (10) (10) (10) (10) (10) (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Atractus major       | OCAZ 14321                 | MH790505  |              |           | 111110555555 | MK 836001     | MK 835961      |
| Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK835916         Atractus riveroi       MNRJ 26087       MH790526       MK835916       MK836006         Atractus schach       AF 1716       MH790527       MK835880       MK835917       MK836007         Atractus tartarus       MPEG 23928       MH790528       MK835918       MK835938       MK836009       MK835965         Atractus tartarus       MPEG 23931       MH790529       MK835919       MK835939       MK836010       MK835966         Atractus torquatus       AF 2281       MH790530       MK835920       MK835940       MK835011       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835921       MK835941       MK836012       MK835968         Atractus torquatus       MTR 19069       MH790533       MK835882       MK835920       MK836013       MK835969         Atractus torquatus       MTR 19408       MH790534       MK835882       MK835942       MK836015       MK835971         Atractus trefauti       MNRJ 26709       MH790536       MK835883       MK835923       MK835942       MK836015       MK835972         Atractus trilineatus       MTR 20505       MTR 20505       MK835924       MK836016       MK835                                                                                                                                                                                                                                                  | Atractus major       | UFAC-RB 532                | MH790511  | MK835879     | MK835915  |              | MK836005      | 10112055501    |
| Atractus schach       AF 1716       MH790527       MK835880       MK835917       MK836007         Atractus schach       AF 1716       MH790527       MK835880       MK835917       MK836009       MK835965         Atractus tartarus       MPEG 23928       MH790529       MK835919       MK835938       MK836009       MK835966         Atractus tartarus       MPEG 21143       MH790530       MK835920       MK835940       MK835911       MK835967         Atractus torquatus       MPEG 21143       MH790531       MK835881       MK835940       MK835011       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835920       MK835941       MK836012       MK835968         Atractus torquatus       MTR 19069       MH790533       MK835922       MK835013       MK835969         Atractus torquatus       MTR 19408       MH790534       MK835882       MK835942       MK836015       MK835971         Atractus trefauti       MNRJ 26709       MH790536       MK835923       MK835942       MK836015       MK835971         Atractus trilineatus       MTR 20505       MTR 20505       MK835924       MK836016       MK835972                                                                                                                                                                                                                                                                                                                                       | Atractus riveroi     | MNR I 26087                | MH790526  | 1111055075   | MK835916  |              | MK836006      | MK835964       |
| Atractus tartarus       MPEG 23928       MH790528       MK835918         Atractus tartarus       MPEG 23931       MH790529       MK835918         Atractus tartarus       MPEG 23931       MH790529       MK835919         Atractus tartarus       MPEG 23931       MH790529       MK835919         Atractus torquatus       AF 2281       MH790530       MK835920         Atractus torquatus       MPEG 21143       MH790531       MK835881         Atractus torquatus       MPEG 23686       MH790532       MK835920         Atractus torquatus       MTR 19069       MH790533       MK835920         Atractus torquatus       MTR 19069       MH790534       MK835882         Atractus trefauti       MNRJ 26709       MH790536       MK835923         Atractus trilineatus       MTR 20505       MK835924       MK836016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Atractus schach      | AF 1716                    | MH790527  | MK835880     | MK835917  |              | MK836007      | 1111055901     |
| Atractus tartarus       MPEG 23931       MH790529       MK835919       MK835938       MK836009       MK835965         Atractus torquatus       AF 2281       MH790530       MK835910       MK835939       MK836010       MK835966         Atractus torquatus       MPEG 21143       MH790531       MK835881       MK835940       MK836011       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835921       MK835941       MK836012       MK835968         Atractus torquatus       MTR 19069       MH790533       MK835922       MK835941       MK835969         Atractus torquatus       MTR 19069       MH790534       MK835882       MK835920       MK835941       MK835970         Atractus torquatus       MTR 19408       MH790534       MK835882       MK835923       MK835942       MK836015       MK835971         Atractus trefauti       MNRJ 26709       MH790536       MK835923       MK835942       MK836015       MK835971         Atractus trilineatus       MTR 20505       MTR 3055       MK835924       MK836016       MK835972                                                                                                                                                                                                                                                                                                                                                                                                                        | Atractus tartarus    | MPEG 23928                 | MH790528  | 1111055000   | MK835918  |              | 1111020007    |                |
| Atractus torquatus       AF 2281       MH790530       MK835920       MK835939       MK836010       MK835966         Atractus torquatus       MPEG 21143       MH790530       MK835920       MK835940       MK835011       MK835967         Atractus torquatus       MPEG 23686       MH790532       MK835921       MK835940       MK836012       MK835968         Atractus torquatus       MTR 19069       MH790533       MK835922       MK835941       MK836013       MK835969         Atractus torquatus       MTR 19069       MH790534       MK835882       MK835922       MK836014       MK835970         Atractus torquatus       MTR 19408       MH790536       MK835882       MK835923       MK835942       MK836015       MK835971         Atractus trefauti       MNRJ 26709       MH790536       MK835924       MK835942       MK836016       MK835971         Atractus trilineatus       MTR 20505       MTR 3055       MK835924       MK836016       MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Atractus tartarus    | MPEG 23931                 | MH790529  |              | MK835919  | MK835938     | MK836009      | MK835965       |
| Atractus torquatus         MPEG 21143         MH790531         MK835881         MK835940         MK836011         MK835967           Atractus torquatus         MPEG 23686         MH790531         MK835881         MK835940         MK836011         MK835967           Atractus torquatus         MTR 19069         MH790533         MK835922         MK835941         MK836013         MK835969           Atractus torquatus         MTR 19069         MH790534         MK835882         MK835922         MK836014         MK835970           Atractus torquatus         MTR 19408         MH790536         MK835882         MK835923         MK835942         MK836015         MK835971           Atractus trefauti         MNRJ 26709         MH790536         MK835883         MK835924         MK836016         MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Atractus torauatus   | AF 2281                    | MH790530  |              | MK835920  | MK835939     | MK836010      | MK835966       |
| Atractus torquatus         MPEG 23686         MH790532         MK835921         MK835941         MK836012         MK835968           Atractus torquatus         MTR 19069         MH790533         MK835922         MK835941         MK836013         MK835969           Atractus torquatus         MTR 19408         MH790534         MK835882         MK835923         MK836014         MK835970           Atractus trefauti         MNRJ 26709         MH790536         MK835883         MK835923         MK835942         MK836015         MK835971           Atractus trilineatus         MTR 20505         MTR 20505         MK835924         MK836016         MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Atractus torauatus   | MPEG 21143                 | MH790531  | MK835881     |           | MK835940     | MK836011      | MK835967       |
| Atractus torquatus         MTR 19069         MH790533         MK835922         MK836013         MK835969           Atractus torquatus         MTR 19408         MH790534         MK835882         MK835923         MK836014         MK835970           Atractus trefauti         MNRJ 26709         MH790536         MK835883         MK835923         MK835942         MK836015         MK835971           Atractus trilineatus         MTR 20505         MTR 20505         MK835924         MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Atractus torauatus   | MPEG 23686                 | MH790532  |              | MK835921  | MK835941     | MK836012      | MK835968       |
| Atractus torquatus         MTR 19408         MH790534         MK835882         MK836014         MK835970           Atractus trefauti         MNRJ 26709         MH790536         MK835883         MK835923         MK835942         MK836015         MK835971           Atractus trilineatus         MTR 20505         MTR 20505         MK835924         MK836016         MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Atractus torauatus   | MTR 19069                  | MH790533  |              | MK835922  |              | MK836013      | MK835969       |
| Atractus trefauti         MNRJ 26709         MH790536         MK835883         MK835923         MK835942         MK836015         MK835971           Atractus trilineatus         MTR 20505         MTR 20505         MK835924         MK835924         MK836016         MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Atractus torquatus   | MTR 19408                  | MH790534  | MK835882     |           |              | MK836014      | MK835970       |
| Atractus trilineatus MTR 20505 MK835924 MK836016 MK835972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Atractus trefauti    | MNRJ 26709                 | MH790536  | MK835883     | MK835923  | MK835942     | MK836015      | MK835971       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Atractus trilineatus | MTR 20505                  |           |              | MK835924  |              | MK836016      | MK835972       |

A. boimirim Passos, Prudente & Lynch, A. elaps (Günther), A. flammigerus, A. latifrons (Günther), A. major, A. riveroi Roze A. schach, A. tartarus, A. torquatus (Duméril, Bibron & Duméril, 1854), A. trilineatus Wagler, as well as four samples of two new species. Newly generated sequences are listed in Table 1.

| Species              | Voucher        | <b>12S</b> | 16S      | CMOS     | СҮТВ     | ND4      | NT3      |
|----------------------|----------------|------------|----------|----------|----------|----------|----------|
| Atractus elaps       | DHMECN 10179   |            | KY610052 |          | KY610076 | KY610101 |          |
| Atractus elaps       | KU 214837      |            |          |          | EF078536 | EF078584 | GU353273 |
| Atractus flammigerus | MNHN 1997.2145 | AF158402   | AF158471 |          |          |          |          |
| Atractus major       | DHMECN 8343    |            | KY610059 |          |          | KY610105 |          |
| Atractus schach      | MNHN 1997.2371 | AF158427   | AF158486 |          |          |          |          |
| Atractus sp.         | MPEG 21582     | JQ598799   | JQ598860 | JQ598971 |          |          |          |
| Atractus zidoki      | MNHN 1997.2046 | AF158426   | AF158487 | -        |          |          |          |
| Geophis godmani      | CAS 178126     | JQ59881    | JQ598877 |          | JQ598932 |          |          |

Table 2. GenBank sequences used in this study.

This material was obtained through both field sampling and loans from Museu Nacional, Universidade Federal do Rio de Janeiro (MNRJ), Museu Paraense Emílio Goeldi (MPEG) and Laboratory of Herpetology (MTR) at Universidade de São Paulo (USP), and Laboratoire Ecologie, Evolution, Interactions des Systèmes amazoniens (AF field number), at CNRS, Cayenne, French Guiana. Newly sequenced specimens are museum vouchers at the Museo de Zoología de la Pontifícia Universidad Católica del Ecuador (QCAZ), Quito, Ecuador, Coleção Herpetológica da Universidade de Brasília (CHUNB), Brasília, Universidade Federal do Acre (UFAC-RB), Rio Branco and Museu Nacional, Universidade Federal do Rio de Janeiro (MNRJ), Rio de Janeiro, Brazil.

Genomic DNA was extracted under a guanidinium isothiocyanate extraction protocol (see details in Torres-Carvajal, Koch, Venegas, & Poe, 2017). Polymerase Chain Reaction (PCR) amplification of gene 16S, CYT-B, C-MOS, NADH4, NT3, and RAG1 fragments were performed in a final volume of 24 µL reactions using 1× PCR Buffer (-Mg), 3 mM MgCl2, 0.2 mM dNTP mix,  $0.2 \,\mu M$  of each primer,  $0.1 \,U/\mu L$  of Taq DNA Polymerase and 1.5 µL of extracted DNA. Amplified products were treated with ExoSAP-IT (Affymetrix, Cleveland, OH) to remove remaining dNTPs and primers, and extraneous single-stranded DNA produced in the PCR. Double-stranded sequencing of PCR products was performed by Macrogen Inc. We amplified three mitochondrial and three nuclear gene fragments (primers in brackets): 16S [16Sar-L and 16Sbr-H-R (Palumbi et al., 1991)], CYT-B [LGL (Bickham, Wood, & Patton, 1995) and CytbV (Torres-Carvajal, Lobos, & Venegas, 2015)], NADH4 [ND413824H and ND412931L (Blair et al., 2009)], and C-MOS [S77 and S78 (Lawson et al., 2005)], NT3 [NT3-F3 e NT3-R4 (Kendall, Yeo, Henttu, & Tomlison, 2001)] and RAG1 [RAG1-MartF1 and RAG1-AmpR1 (Hoegg, Vences, Brinkmann, & Meyer, 2004)]. When available, we used GenBank sequences, limiting the sampling only to species known to occur in the GS. We examined all vouchers of sequences deposited in GenBank, except for two specimens: KU 214837

Atractus elaps from University of Kansas and BIOTA 1185 A. tartarus from Universidade Federal do Pará. We re-identified and excluded terminals for Atlantic species from previously published data (Grazziotin et al., 2012). We excluded sequences with no vouchers, locality data, or both, and split the previously documented chimeras used by Pyron, Burbrink, and Wiens (2013) for A. trihe-drurus, Pyron, Guayasamin, Peñafiel, Bustamante, and Arteaga (2015), Pyron, Arteaga, Echevarría, and Torres-Carvajal, (2016) and Figueroa, McKelvy, Grismer, Bell, and Lailvaux (2016) for A. schach and A. zebrinus. We excluded the sequences used by Arteaga et al. (2017) for A. badius and A. major (ANF 1545). All analysed sequence data were obtained from single voucher specimens to avoid 'chimeric sequence terminals'.

## Sequence editing, alignment, and phylogenetic analyses

Data were assembled and aligned in Mega 7.0 (Kumar, Stecher, & Tamura, 2016) under default settings for Clustal W (Thompson, Higgins, & Gibson, 1994). Our dataset totalled 66 terminals, with 57 newly sequenced and nine from GenBank (Table 2). The concatenated matrix was built in SequenceMatrix (Vaidya, Lohman, & Meier, 2011). The best-fit nucleotide substitution models and partitioning scheme were determined simultaneously using PartitionFinder 2 (Lanfear, Frandsen, Wright, Senfeld, & Calcott, 2016), using the 'greedy' algorithm (Lanfear, Calcott, Ho, & Guindon, 2012), the 'MrBayes' set of models and the Bayesian information criterion to compare the fit of different models (Sullivan & Joyce, 2005). Genes were combined with seven partitions, one per non-coding gene and three per protein coding gene corresponding to each codon position. Bayesian inference was employed using MrBayes v3.2.1 (Ronquist et al., 2012) on the CIPRES Science Gateway v3.3 (Miller, Pfeiffer, & Schwartz, 2010). All parameters except topology and branch lengths were unlinked between partitions. Four independent runs, each with four MCMC chains, were run for 20 million generations, sampling every 10,000 generations. We used Tracer v1.6 (http://beast.bio.ed.ac.uk/Tracer) to assess convergence and stationarity by plotting the –ln L per generation, as well as to ensure effective sample sizes (ESS) >200 of model parameters. We combined runs using LogCombiner 1.8 after discarding 25% as burn-in and summarized sampled trees into a maximum clade credibility tree in TreeAnnotator v1.8.3 (Drummond, Suchard, Xie, & Rambaut, 2012). We chose *Geophis* godmani Boulenger, 1894 as outgroup following the rooting strategy of Arteaga et al. (2017). The phylogenetic tree was edited and visualized using FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

### Terminology, techniques, characters, and presentation rationale

Terminology for cephalic shields follows Savage (1960) and Peters (1964) whereas ventral and subcaudal counts follow Dowling (1951). Condition of the loreal scale follows Passos, Fernandes, and Borges-Nojosa (2007). Measurements were taken with a Mitutovo® digital calliper to the nearest 0.1 mm. except for snout-vent length (SVL) and tail length (TL), which were measured with a ruler to the nearest 1 mm. Measurements and descriptions of paired cephalic scales are strictly based on the left side of head. We follow the definition of Passos et al. (2016) for body marks (blotches, spots, and dots), where they counted separately for each side of the dorsum, and the use of 'blotch' refers to broader (two or more scales long and wide) dorsal marks located on the vertebral and paravertebral regions. Colour in preservative follows Köhler (2012). Sex determination was based on verification of the presence or absence of hemipenes through a ventral incision at the base of the tail.

We examined maxillae in situ under a Luxeo 4Z (Labomed) stereoscope through a narrow lateromedial incision between the supralabials and the maxillary arch. We counted teeth and empty sockets after removing tissues covering the maxillary bone. The method for preparation of preserved hemipenes was modified from Pesantes (1994) in replacing potassium hydroxide (KOH) with distilled water. Posteriorly, they were fully expanded with injection of coloured petroleum jelly (see Passos et al., 2016 for detailed explanation). Terminology for hemipenial descriptions follows Dowling & Savage (1960) and Zaher (1999) with a few minor adaptations following Passos et al. (Passos, Kok, et al., 2013; Passos et al., 2016). We follow Passos et al. (2010) regarding conditions of morphological characters used in diagnoses and descriptions. The species accounts are presented in chronological order with the specific subheadings synthesizing all information for each character system according with Passos, Kok, et al. (2013). Institutional abbreviations follow Sabaj (2016), except for the field numbers. Data from additional specimens of *Atractus* examined from the GS are presented in Appendix I (see online supplemental material, which is available from the article's Taylor & Francis Online page at https://dx.doi.org/10.1080/14772000.2019.1614694) to facilitate future comparisons and references, except those from Pantepui taxa and for *A. flammigerus* and *A. torquatus* listed in Passos et al. (Passos, Kok, et al., 2013; Passos et al., 2017) and Passos and Prudente (2012), respectively.

All the species recognized herein based on reciprocal monophyly (using molecular phylogenetics) exhibited unambiguous phenotypic diagnostic characters or exclusive combinations of traits observed in the morphological dataset. We used such characters to support the recognition of a given lineage in agreement with the recovered topology. Because most species from the GS and adjacent areas of Amazonia have not been included in previous molecular phylogenetic analyses, they have been placed tentatively in some species groups by previous authors (e.g., Passos et al., 2016), or have remained without group assignment (*A. riveroi* and *A. torquatus*).

#### Results

#### **Phylogenetic analyses**

We consider posterior probability values above 0.95 as strongly supported, values between 0.7 and 0.95 as moderately supported, and below 0.7 as weakly supported. The *Atractus flammigerus* group is not recovered as monophyletic (Fig. 1). *Atractus major* (with maximum support) and *A. boimirim* are successive sister taxa to a large clade containing all the other sampled species of *Atractus*. Within the next clade, *Atractus elaps* and *A. latifrons* form a strongly supported clade that is the sister group to remaining species, which are nested in two less well-supported subclades: (*A. badius, (A. torquatus, (A. riveroi, A. flammigerus))*) and ((*A. trilineatus, A. zidoki), (A. tartarus, ((A. dapsilis, A. sp.), (A. schach, A. trefauti.)))).* 

A small clade containing *A. trilineatus* and *A. zidoki* is recovered with low support (PP= 0.49). The latter species is a member of the *Atractus collaris* species group sharing several putative synapomorphies with *A. alphonsehogei*, *A. caxiuana*, *A. collaris*, *A. hoogmoedi*, and *A. surucucu* (Passos et al., 2013c; Passos, Prudente, Ramos, Caicedo-Portilla, & Lynch, 2018). *Atractus tartarus*, previously considered as a member of *A. flammigerus* group (Passos et al. 2016), is recovered as sister



Fig. 1. Phylogeny of *Atractus* from the Guiana Shield. Maximum clade credibility tree obtained from a Bayesian analysis of three mitochondrial and three nuclear genes. Red colour indicates new species described here. Blue colour indicates species formerly assigned to the *Atractus flammigerus* group. Asterisks indicate high posterior probabilities (>0.95). Photographs from top to bottom: A. tartarus (R. Bérnils), *A. schach* (C. Marty), *A. flammigerus* (S. Sant), *A. torquatus* (M. Sena), *A. badius* (B. Dupont), *A. latifrons* (P.R. Melo-Sampaio), *A. elaps*, *A. major* (P.R. Melo-Sampaio) and *A. boimirim* (M.S. Hoogmoed).

species of a weakly supported clade (PP=0.5) containing an unnamed Amazonian species, *Atractus schach* and two new species from the GS (described in taxonomic section).

A distinct clade is formed exclusively by *Atractus* badius (PP = 0.3), confirming its uniqueness and corroborating that the 'coral colour pattern' is not related only to *A. elaps* group. *Atractus torquatus* is recovered as a maximally supported sister species of a clade comprising *A. flammigerus* and *A. riveroi*. External morphology and hemipenis (when available), are in agreement with our concatenated analysis, and the

combined results allow us to clarify the status of *A. schach* and three new species from GS we intend to describe herein.

#### Taxonomic account

Atractus schach (Boie, 1827) (Fig. 2)

*Brachyorrhos schach* F. Bóie, 1827; Isis Von Oken 1827:540. *Calamaria badia* – Schlegel, 1837; Essai sur la Physionomie des Serpens Partie:35. (part.)



Fig. 2. (1) Lectotype RMNH 119a and (2) paralectotype RMNH 119b of *Atractus schach*. Photo by Marinus S. Hoogmoed.

Rabdosoma badium – Duméril, Bibron & Duméril, 1854; Erpétologie Générale Livr. 7:95. (part.) *Atractus badius* – Boulenger, 1894; Catalogue of the Snakes in the British Museum 2:309 (part.).

**Lectotype.** Adult male, RMNH 119a, provenance given as 'Guiana'. Hoogmoed (1980) restricted the type locality to Mamadam (4°56'N, 55°33'W; 33 m above sea level, hereafter asl), Saramaca River, Sipaliwini, Suriname (photos examined).

**Paralectotype.** Young male, RMNH 119b, same data of lectotype (photos examined).

Diagnosis. Atractus schach is distinguished from all congeners by the following combination of characters: (1) smooth dorsal scale rows 17/17/17; (2) postoculars two; (3) loreal moderately long; (4) temporal formula 1+2; (5) supralabials seven, third and fourth contacting eye; (6) infralabials eight, first four contacting chinshields; (7) maxillary teeth seven; (8) gular scale rows three; (9) two preventrals; (10) ventrals 148-150 in females, 142-151 in males; (11) subcaudals 19-21 in females, 25-32 in males; (12) in preservative, dorsum olive brown with a series of black regular bands until midbody when becomes alternated dark greyish brown blotches separated by a vertebral line; (13) in preservative, venter cream with two parallel rows of sepia dots or square spots; (14) small body size in female (maximum 260 mm SVL) and in male (maximum 275 mm SVL); (15) moderately long tail both in female (10–11.3% SVL) and male (10–14% SVL); (16) hemipenis strongly bilobed, slightly semicapitate and semicalyculate.

Comparisons. We restricted the comparisons by geographic proximity due to regionalization and putative endemism of GS snake. Thus, Atractus schach differs from A. aboiporu sp. nov., A. elaps, A. latifrons, A. insipidus, A. tamessari, and A. trilineatus by having 17 dorsal scale rows (vs. 15 dorsal scale rows). Regarding the GS species with 17 dorsal scales rows, Atractus schach differs from A. badius in its dorsal olive-brown colouration with greyish brown transversal bands, and cream to buff ventral colouration with scattered sepia dots (vs. 'coral colour pattern' with black diads separated by cream bands, venter immaculate cream anteriorly, followed by square dark brown dots from midbody to posterior region of belly). Atractus schach is distinguished from A. flammigerus by SVL < 300 mmin both sexes and absence of keeled dorsal scales near cloaca (vs. adult SVL  $> 300 \,\mathrm{mm}$  and presence of keels on dorsal scale rows in A. flammigerus); from A. torquatus by having SVL  $< 300 \,\mathrm{mm}$  in both sexes two postoculars and < 33 subcaudals (vs. one postocular and 34-47 subcaudals in females, 35-53 in males in A. torquatus from GS: Passos & Prudente, 2012); from A. zidoki by having dorsal scales without apical pits and supra-cloacal tubercles, olive-brown dorsum with dark grevish brown bands and bilobed hemipenis (vs. presence of apical pits and/or supracloacal tubercles on the dorsal scales, light brown dorsum with longitudinal series of paravertebral spots and unilobed hemipenis in A. zidoki). For the comparisons between A. schach and the new species see section 'comparisons' respectively for each species.

Redescription. Adult male AF 1716. coll. A. Fouquet, E. Courtois and J.-P. Vacher, 26 February 2014, Saül, crique Limonade (3°33'45.3"N, 53°12'37.7"W; 229 m asl). French Guiana. SVL 260 mm. tail length 35 mm (13.4% SVL); head slightly distinct from body; head length 7.8 mm (3% SVL); head width 6.2 mm (79.5% head length); rostral-orbit distance 3.3 mm; nostril-orbit distance 2.5 mm; interorbital distance 3.9 mm; head rounded in lateral view; snout rounded in dorsal view, truncate in lateral view; canthus rostralis poorly defined; rostral subtriangular in frontal view, 1.9 mm wide, 1.1 mm high, visible in dorsal view; internasal 0.9 mm long, 1.0 mm wide; internasal suture sinistral with respect to prefrontal suture; prefrontal 2.5 mm long, 2.1 mm wide; supraocular subtrapezoidal, 1.4 mm long, 1.2 mm wide at broadest point; frontal pyramidal, 2.3 mm long, 3.1 mm wide; parietal 4.1 mm long, 2.8 mm wide; nasal entirely divided, nostril well-divided in both parts; prenasal 1.0 mm high, 0.5 mm long; postnasal 1.0 mm high, 0.6 mm long; loreal 2.1 mm long, 0.7 mm high; second and third supralabials contacting loreal; third and fourth supralabials entering the orbit; eve diameter 1.25 mm; pupil rounded; two postoculars; upper postocular 0.6 mm long, 0.7 mm high; lower postocular 0.7 long, 0.9 mm high; temporal formula 1+2; first temporal 1.8 mm long, 1.4 mm high; upper posterior temporals 3.3 mm long, 1.0 mm wide; supralabials seven, third and fourth contacting eye; first supralabial shorter in height and length (0.7 & 0.5 mm) than second (1.0 & 0.8 mm); third supralabial pentagonal, taller (1.2 mm) and longer (2.0 mm) than second; sixth supralabial as tall as third; seventh as long as third (2.0 mm) supralabial; symphysial subtriangular, 1.7 mm wide, 0.4 mm long; first pair of infralabials in contact medially, preventing symphysial-chinshields contact; infralabials seven, first four contacting chinshields; chinshields each 3.5 mm long, 1.4 mm wide; gular scale rows three; three preventrals; ventrals 142; subcaudals 26; dorsal scale rows 17/17/17, lacking apical pits and supracloacal tubercles; midbody diameter 6.9 mm (2.8% SVL); caudal spine 1.2 mm long, larger than last subcaudal scale (0.9 mm). Retracted hemipenis extends to level of 11th subcaudal, bifurcated at the level of 8th subcaudal. Maxillary bone arched upward anteriorly in lateral view, ventral portion curved anteriorly and nearly flattened in mid to posterior portion; maxillary teeth five, angular in cross section, robust at base, narrower at apices, slightly curved posteriorly, similar in size and spacing; maxillary diastema absent or indistinct from interspaces: lateral process of maxilla well developed.

Dorsum of head dark greyish brown with incomplete collar olive-brown parietals and raw umber suture between parietals extending for eight dorsals long; anterior edges of first four supralabials cream, except for fifth and sixth, in which pigmentation is mostly uniform dark greyish brown; lateral sides of head almost completely dark greyish brown including postocular and anterior temporal; cream infralabials and gular region with sepia spots, except for last two infralabials that are almost completely cream; venter cream to buff with a few dispersed sepia dots on lateral region of ventral scales; ventral surface of tail straw yellow with irregular cream dots; dorsal ground colour olive-brown with 25 conspicuous dark greyish brown bands 1-3 scales long, connected along vertebral axis or not, with sepia narrow vertebral line sometimes inconspicuous covering one scale row width from parietal scale into tip of tail; pale interspaces between dark grevish brown bands often covering five scales long; first dorsal scale row cream, with sepia pigments contacting ventrals; dorsal surface of tail olive brown with four conspicuous bands; tip of tail olive brown.

**Referred material.** French Guiana: Orstom 141 from Mana. MNHN 1997.2371 from Camp de Saint-Eugène. MNHN 1997.2481 no specific locality. MNHN 2002.615 from Nouragues. AMNH 139922 no specific locality. RMNH 38072 from Petit Saut, Sinnamary River. Suriname: RMNH 12683 from km 121 road to Brownsberg mountains. SMNS 2664 from Gonini camp.

Hemipenial morphology. Organ in situ (entirely retracted) extends to level of 11th subcaudal and bifurcates at level of 9th subcaudal (n = 1). Fully everted and almost maximally expanded hemipenis renders a strongly bilobed, slightly semicapitate, and semicalyculate organ (Fig. 8.1); lobular region as wide as hemipenial body; lobes centrifugally oriented, attenuated with rounded apices; lobes asymmetrical with right lobe longer than left; lobes uniformly covered with spinulate calyces on both sides of hemipenis; spinules replaced by irregular papillae toward apices of lobes; capitular groove indistinct on the sulcate side of and little evident on the asulcate side of organ; basal and lateral regions of capitulum with irregular rows of spinulate calyces; hemipenial body elliptical covered with enlarged hooked spines; larger spines generally located laterally below sulcus spermaticus bifurcation; distal region of hemipenial body on maximally expanded organ with rows of spines concentrated in the middle of asulcate face; sulcus spermaticus bifurcates approximately on the 30% of organ length with each branch straight-sided, running to tip of lobes; sulcus spermaticus margins relatively thick at level of division and along the capitular region; sulcus spermaticus not bordered by spinules; basal naked pocket restricted to most basal region of hemipenial body; proximal region of hemipenis covered with few dispersed spinules and longitudinal plicae.

**Quantitative variation.** (n = 10). Largest female 260 mm SVL, 26 mm TL; largest male 260 mm SVL, 35 mm TL; tail 10–11.3% SVL in females, 10–14% SVL in males; ventrals 148–150 (mean = 149; n = 2; SD = 1.41) in females, 133–151 (mean = 145; n = 8; SD = 5.35) in males; subcaudals 19–21 (mean = 20; n = 2) in females, 25–32 (mean = 28.5; n = 5) in males; supralabials seven (n = 2 sides) or eight (n = 4 sides); infralabials eight (n = 8 sides) or nine (n = 4 sides); preventrals three (n = 3); adult midbody diameter 8.0–8.3 mm; maxillary teeth five (n = 1), six (n = 2 sides), or seven (n = 3 sides).

**Distribution.** *Atractus schach* occurs in lowlands of Guyana (Cole, Townsend, Reynolds, MacCulloch, & Lathrop, 2013; this study), French Guiana (Chippaux, 1986; Starace, 1998; Vidal et al., 2000; this study) and Suriname (Hoogmoed, 1980; van Lidth de Jeude, 1904).

**Remarks.** Retracted hemipenis was described by Hoogmoed (1980). All known localities of *A. schach* are in the northern part of Tumucumaque massif.

#### Atractus dapsilis sp. nov. (Figs 3, 4)

Atractus badius var. E (Boulenger, 1894 p. 309). Atractus schach (Martins & Oliveira, 1993, p. 32, fig. 4d, 6b; Martins & Oliveira, 1998, p. 97, plate 22; Fraga et al., 2013, p. 158; Morato et al., 2014, p. 93; Morato et al., 2018, p. 10). Atractus snethlageae (Zimmerman & Rodrigues, 1990; Martins & Oliveira, 1993, p. 34,



**Fig. 3.** Dorsal (1), lateral (2) and ventral (3) views of head of the holotype of *Atractus dapsilis* (MNRJ 14914) from Oriximiná, Pará, Brazil.



Fig. 4. Distinct colouration in *Atractus dapsilis* paratypes. (1) MNRJ 14912 and (2) MNRJ 14911.

fig. 4e, 6c; Martins & Oliveira, 1998, p. 97, plate 23; Fraga et al., 2013, p. 160; Morato et al., 2014, p. 94; Morato et al., 2018, p. 10; Schargel et al., 2013, p. 465).

**Holotype.** Adult male MNRJ 14914: *coll*. E. G. Pereira and team, 1 February 2007, Platô Teófilo, Flona Saracá-Taquera (1°42'51.6"S, 56°24'34.0"W), alt. 97 m asl, Oriximiná, Pará, Brazil.

**Paratypes.** All from Brazil. Adult females (n = 15)PARÁ: Oriximiná MNRJ 14913: coll. E. G. Pereira and team, 30 January 2007. MNRJ 14915: coll. E. G. Pereira and team, 30 January 2007. MNRJ 16799: coll. R. R. Pinto and team, 19 March 2008. MNRJ 16801: coll. R. R. Pinto and team, 20 March 2008. MNRJ 16802: coll. R. R. Pinto and team, 30 June 2008. MNRJ 16803: coll. R. R. Pinto and team, 1 June 2008. MPEG 23759: coll. F. L. Trein, 12 August 2009. MPEG 21570: coll. R. R. Carvalho Jr., 20 May 2006. IBSP 87633: coll. S. Morato, 1 March 2014. MNRJ 16796: coll. R. R. Pinto and team. 8 March 2008. Terra Santa INPA-H 31489: coll. Unknown, 2 August 2011. Amazonas: Manaus MZUSP 3713 coll. K. Lenko, September 1962 (3°07'00.0"S, 60°00'00.0"W) atl. 42 m asl. Rio Preto da Eva MZUSP 8659 coll. B. Zimmerman, 1985, Reserva 41 - INPA/ WWF (2°25'00.0"S, 59°43'00.0"W) alt. 81 m asl. Presidente Figueredo MPEG 17426 coll. Rescue Team, 26 January 1988. MPEG 17427 coll. Sônia, 27 January 1988; MPEG 17539 coll. Rescue Team, 11 May 1988.

Adult males (n = 24) PARÁ: Oriximiná MNRJ 14910: coll. E. G. Pereira and team, 2 February 2007 (1°46'24"S, 56°31'57"W) alt. 130 m asl. MNRJ 14911: coll. E. G. Pereira and team, 5 December 2006. MNRJ 14912: coll. E. G. Pereira and team, 4 December 2006. MNRJ 16794: coll. R. R. Pinto and team, 13 March 2008. MNRJ 16795: coll. R. R. Pinto and team 16 March 2008 (1°27'57"S, 56°22'36"W), alt. 180 m asl. MNRJ 16797: coll. R. R. Pinto and team, 19 March 2008. MNRJ 16798, 16800: coll. R. R. Pinto and team, 19 March 2008. MNRJ 16804: coll. R. R. Pinto and team, 3 July 2008. MPEG 20782: coll. Unknown, 15 November 2003. MPEG 23505: coll. S. Morato, 12 May 2009. MPEG 23760: coll. F. L. Trein. 25 August 2009. MPEG 21569: coll. R. R. Carvalho Jr, 8 May 2006. MPEG 21712-13: coll. E. G. Pereira and team, 31 January 2007. Terra Santa MNRJ 17953-54: coll. F.E. Pimenta and D.M. Morais, 4 to 6 February 2009. Amazonas: Manaus INPA-H 18466 coll. R. de Fraga, 20 November 2006; INPA-H 32271 coll. Unknown, 12 May 2004; INPA-H 32348 coll. Unknown, 11 November 2012, all from Reserva Florestal Adolpho Ducke (2°57'47.7"S, 59°55'22.5"W) alt. 111 m asl. Rio Preto da Eva MZUSP 9501 *coll.* B. Zimmerman, 9 March 1987, Reserva 41 – INPA/WWF (2°25'00.0"S, 59°43'00.0"W) alt. 81 m asl. IBSP 49430 Reserva Campina – km 60, Manaus-Caracaraí highway (2°30'00"S, 60°00'00"W) alt. 132 m asl; Presidente Figueredo MPEG 17495 *coll.* Rescue Team, 26 March 1988. MPEG 17568 *coll.* Rescue Team, 28 May 1988, all from Balbina (1°55'10.0"S, 59°28'08.7"W) alt. 29 m asl.

**Referred material.** IMTM 1061 without data, Manaus. IMTM 1678, 1440, 1378, 1501, 1563, 1354 without data, Presidente Figueredo. RMNH 26020 *coll.* H. Lima and team. 10 October 1991 and RMNH 26021 *coll.* B. Santos and team, 28 October 1991, all from Pitinga river, Presidente Figueredo (1°24'22.1"S, 59°36'43.7"W) alt. 41 m asl.

Diagnosis. Atractus dapsilis is distinguished from all congeners by the combination of the following characters: (1) smooth dorsal scale rows 17/17/17; (2) postoculars two; (3) loreal long; (4) temporal formula 1+2; (5) supralabials seven, third and fourth contacting eye; (6) infralabials eight, first four contacting chinshields; (7) six or seven maxillary teeth; (8) gular scale rows three; (9) preventrals three; (10) ventrals 167–182 in females, 152-166 in males; (11) subcaudals 21-26 in females, 30-37 in males; (12) in preservative, dorsum beige to pale brown with a series of dark brown regular bands (21-40 in females, 19-32 in males), some of which are in contact dorsomedially or black with pale bands (morphotype more frequent in males); (13) in preservative, venter pale cream with brown dots forming an inconspicuous midventral line: (14) moderate body size in females (maximum 500 mm SVL) and in males (maximum 360 mm SVL); (15) small tail in females (7.3-10% SVL), moderately long in males (13.3-17.6% SVL); (16) hemipenis strongly bilobed, semicapitate, and semicaliculate.

**Comparisons.** A. dapsilis differs from A. aboiporu, A. elaps, A. latifrons, A. insipidus, and A. trilineatus by having 17 dorsal scales rows (vs. 15 dorsals). Regarding species with 17 dorsal scales rows, Atractus dapsilis differs from A. badius in its dorsal colouration being uniformly black with reddish bands or cinnamon with dark bands (Fig. 4), its ventral colouration with scattered brown spots and <38 subcaudals in males (vs. dorsum with black dyads separated by cream bands; belly immaculate anteriorly, followed by square black spots posteriorly; >40 subcaudals in males); differs from A. favae by having contact between first pair of infralabials and chinshields and moderate tail <20% SVL (vs. first

pair of infralabials separated from chinshields by first pair of infralabials and tail >22% SVL in A. favae): from A. flammigerus by lacking keels on the dorsal scales and seven supralabials (vs. keels on the dorsal scales and eight supralabials in A. flammigerus); from A. torquatus by having two postoculars (vs. one in A. torquatus from GS; Passos and Prudente 2012); from A. zidoki by having smooth dorsal scales without apical pits, six or seven maxillary teeth and bilobed hemipenis (vs. dorsal scales with apical pits, four or five maxillary teeth and unilobed hemipenis in A. zidoki); from A. snethlageae by having 167-182 ventrals in females, 152-166 in males; tail 7-10% SVL in females, 13.6-17.4% SVL in males (vs. 147-160 ventrals in females, 137-155 in males; 8.3-11.3% SVL in females, 13.3–16% SVL in males of A. snethlageae). Atractus dapsilis is closely related (Fig. 1) and morphologically similar to A. schach (at least, the pale morph). However, A. dapsilis is distinguished from A. schach by having 300-451 mm SVL in females and 250-360 mm SVL in males, and more than 152 ventrals in both sexes (vs. maximum SVL 275 mm, < 151 ventrals in both sexes in A. schach).

Description of the holotype. Adult male, SVL 307 mm, TL 47 mm (15.3% SVL); head slightly distinct from body; head length 8.3 mm (2.7% SVL); head width 6.4 mm (2.1% head length); rostral-orbit distance 3.5 mm; nostril-orbit distance 2.8 mm; interorbital distance 4.1 mm; head rounded in lateral view; snout rounded in dorsal view, truncate in lateral view; canthus rostralis little conspicuous; rostral subtriangular in frontal view, 2.1 mm wide, 0.9 mm high, well visible in dorsal view; internasal 0.8 mm long, 0.9 mm wide; internasal suture sinistral with respect to prefrontal suture; prefrontal 2.8 mm long, 2.2 mm wide; supraocular ovoid (left) and pentagonal (right), 1.2 mm long, 1.0 mm wide at broadest point; frontal pyramidal, 2.8 mm long, 2.9 mm wide: parietal 4.6 mm long, 2.7 mm wide: nasal entirely divided, nostril well-divided in both parts; prenasal 0.9 mm high, 0.6 mm long; postnasal 1.1 mm high, 0.7 mm long; loreal 2.2 mm long, 0.9 mm high; second and third supralabials contacting loreal; third and fourth supralabials entering the orbit; eye diameter 1.2 mm; pupil rounded; two postoculars distinct in height, lower less tall than upper; upper postocular 0.8 mm long, 1.1 mm high; lower postocular 0.6 long, 0.9 mm high; temporal formula 1+2; first temporal 2.2 mm long, 1.2 mm high; upper posterior temporals 3.2 mm long, 1.1 mm wide; supralabials seven, third and fourth contacting eye; first supralabial less tall (0.9 mm high) than second (1.1 mm high) and smaller in length (0.6 mm) than second (0.8 mm); third supralabial pentagonal,

taller (1.2 mm) and longer (2.1 mm) than second; sixth supralabial taller (1.5 mm); seventh longer than third (2.5 mm) supralabial; symphysial subtriangular, 1.9 mm wide, 0.4 mm long; first pair of infralabials prevent symphysial-chinshields contact; infralabials eight, first four contacting chinshields; chinshields 3.6 mm long, 1.4 mm wide; gular scale rows three (Fig. 3); preventrals three; 155 ventrals; subcaudals 32/32; dorsal scale rows 17/17/ 17. lacking apical pits and supracloacal tubercles: midbody diameter 8.4 mm (2.7% SVL) caudal spine 1.7 mm long, larger than last subcaudal scale (1.0 mm). Retracted hemipenis extends to the level of 11th subcaudal and bifurcated at 9th. Maxillary bone arched upward anteriorly in lateral view, ventral portion curved anteriorly and nearly flattened in mid to posterior portion; maxillary with seven teeth; teeth angular in cross section, robust at base, narrower at apices, slightly curved posteriorly; teeth similar in size and spacing; last teeth slightly smaller and similarly spaced as anterior ones; maxillary 'diastema' absent or indistinct from interspaces; lateral process of maxilla well developed.

Dorsum of head Vandyke brown with X-shaped olive brown interparietal band; extending equivalent to six dorsal scales long; background of body cinnamon; ventral edges of supralabials cream along border of mouth; lateral sides of head almost completely Vandyke brown to the level of postocular and anterior temporal; posterior lower temporal cream, forming pale occipital area on lateral sides of head: first four infralabials and gular region spotted with Vandyke brown marks, four last infralabials almost completely pale; venter cream with dark brown dots concentrated on midventral region of belly, forming a conspicuous longitudinal stripe; ventral surface of tail cream with drab dots irregularly disposed on subcaudals until level of tip of retracted hemipenis; dorsal ground colour cinnamon with 25 conspicuous sepia bands (0.5-3 scales long), connected to opposite marks until midbody when become alternated; a dark vertebral line sometimes inconspicuous covering one scale row in width from midbody to tip of tail; pale interspaces (four to five scales long) between dark brown bands with irregular dark brown spots concentrated on the paraventral region and, eventually, connected to transverse bands; first dorsal scale row mostly pale cream with dark brown pigmentation concentrated on ventral portion in contact with ventrals; dorsal surface of tail pale brown with conspicuous lateral dark brown spots (sometimes similar to lines); tip of tail dark brown.

**Colour pattern variation (Fig. 5).** The colour patterns of paratypes agree in general with that described for the holotype with minor variation in the dorsal ground

colour from tawny olive to drab spotted with raw umber to olive brown blotches. Although the dark morph is associated in our sample mostly with males (MNRJ 14910–11, 16794–95, 17953–54. MPEG 21569, 23760), there are at least two females (INPA-H 31489 and MPEG 21570) with such a pattern. The dark morph is as follows: dorsum dark greyish brown to sepia with cinnamon bands (half-scale to three scales long); olivebrown interparietal band; venter cream with raw umber dots increasing in size and number after midbody; ventral surface of tail darker than belly due to higher concentration of raw umber dots on midline with lateral portions of subcaudals predominantly cream.

**Quantitative variation** (n = 55). Largest female 500 mm SVL, 40 mm TL; largest male 360 mm SVL, 48 mm TL; tail 7–10% SVL in females, 13.6–17.4% SVL in males; ventrals 167–182 (mean 173.3; n = 23; SD=4.3) in females, 152–163 (mean 159.5; n = 32; SD=3.7) in males; subcaudals 21–26 (mean 23.0; n = 23; SD=1.7) in females, 30–37 (mean 33.4; n = 32; SD=1.9) in males; supralabials seven (n = 99 sides) or eight (n = 89 sides); preventrals two (n = 4), three (n = 45), or four (n = 6); adult midbody diameter 7.8–12.0 mm; maxillary teeth six (n = 15 sides) or seven (n = 14 sides). MNRJ 14911 possesses an azygous scale between internasals and prefrontals.

Variation in hemipenial morphology (n = 6). Organ in situ (retracted) extends to the level of 10-12th subcaudal and bifurcate at level of 8th or 9th subcaudal. Fully everted and maximally expanded hemipenis rendered a strongly bilobed, semicapitate, and semicalyculate organ (Fig. 8.3-8); lobular region slightly wider then hemipenial body; lobes nearly attenuate, conical and centrifugally oriented; lobes approximately symmetrical and uniformly covered with spinulate calyces on both sides of hemipenis: calvces on distal region of lobes ornamented with irregular papillae toward apices of lobes; interlobular region nude at base; lobular portion on both faces of organ and basal region of capitulum, except for the intrasulcar region, conspicuously ornamented with transverse spinulate flounces; intrasulcar region of sulcate side of hemipenis with predominantly irregular calyces; regular flounces distributed along both sides of organ but more conspicuous laterally; flounces formed by loss of vertical walls of calyces on laterodistal regions of both faces of capitulum; capitular groove well evident on both sides of hemipenis; capitulum covering  $\sim 40\%$  of hemipenial length; hemipenial body elliptical and surrounded with large hooked spines; larger spines



Fig. 5. Colour in life of Atractus dapsilis. Photos: L. Mendes (1-4) and M. Martins (5-8).

generally located laterally below sulcus spermaticus bifurcation; distal region of hemipenial body on maximally expanded organs with rows of spines concentrating in the middle of asulcate face; sulcus bifurcates in the middle-length of organ with each branch centrifugally oriented, running to tip of lobes; sulcus spermaticus margins relatively thick at level of division and capitular region; sulcus spermaticus not bordered by spinules; basal naked pocket long, almost reaching level of bifurcation of sulcus spermaticus; proximal region of hemipenis with few dispersed spinules and longitudinal plicae (Fig. 8C–F).

**Etymology.** The specific epithet '*dapsilis*' is a neuter Latin adjective meaning abundant or bountiful. We use this name in reference for the relative local abundance of the new species, which unlike many other congeners is herein described based on a large sample size.

**Distribution.** *Atractus dapsilis* occurs in terra firme Amazonian rain forest, ranging from plateaus (29–180 m asl) in the Brazilian States of Amazonas (municipalities of Manaus, Presidente Figueredo, and Rio Preto da Eva) and Pará (municipalities of Oriximiná and Terra Santa). The natural history of this species is well reported by Martins and Oliveira (1993).

> Atractus trefauti sp. nov. (Figs 5, 6.5–6)

Atractus flammigerus snethlageae (Cunha & Nascimento, 1983; in part)

**Holotype.** Adult male, MNRJ 26709 (field number AF 814): *coll.* A. Fouquet, E. Courtois and M. Dewynter, 18 December 2012, Route de l'Est N2, Roura, French Guiana, (4°29'19.7"N, 52°21'01.4"W; 43 m asl).

**Paratypes.** Females (n=3) MPEG 25788: *coll.* U. Gallatti, D. Silvano and B. Pimenta, 9 November 2000, Serra do Navio, Amapá, Brazil. MPEG 16382: [formerly paratype of *Atractus flammigerus snethlageae*] *coll.* J. Luiz, 17 July 1977, Serra do Navio, Amapá, Brazil. MNHN 2015.56: *coll.* F. Starace, 16 April 2015, Réserve de la Trinité, Mont Tabulaire, French Guiana. Males (n=2) MPEG 21354–55: *coll.* T.A. Gardner and M.A. Ribeiro-Júnior, 21 March 2005, Monte Dourado  $(1^{\circ}1'32"S, 52^{\circ}54'17"W)$ , Almeirim, Pará, Brazil.

**Referred specimens** (n = 2)**.** Adult male, AMNH-R 139916 and juvenile male, AMNH-R 139923: *coll*. Unknown, between 15 July to 19 September 1993, no specific site, French Guiana.

**Diagnosis.** Atractus trefauti can be distinguished from all congeners by the unique combination of the



Fig. 6. Dorsal (1), lateral (2) and ventral (3) views of the holotype of *Atractus trefauti* (MNRJ 26709) from Roura, French Guiana.

following characters: (1) smooth dorsal scale rows 17/ 17/17: (2) postoculars two: (3) loreal moderately long: (4) temporal formula 1+2; (5) supralabials seven, third and fourth contacting eve; (6) infralabials eight, first four contacting chinshields; (7) maxillary teeth five to seven; (8) gular scale rows three; (9) three preventrals; (10) ventrals 153-158 in females, 139-149 in males: (11) subcaudals 21–24 in females, 24–29 in males; (12) in preservative, dorsum black with a series of white regular bands one scale long, interrupted on vertebral scales, 15-26 in females, 27-40 in males; (13) in preservative, venter pale cream with scattered brown dots almost forming a midventral line, increasing in size in the posterior half of body; (14) small body size in both sexes (maximum SVL 332 mm in females, 295 mm SVL in males); (15) moderately short tail in females (8.3–9.9% SVL), moderately long tail in males (12.2-13.2% SVL); (16) hemipenis slightly bilobed, semicapitate and semicalyculate.

Comparisons. Atractus trefauti differs from A. aboiporu, A. elaps, A. latifrons, A. insipidus, A. tamessari, and A. trilineatus by having 17 (vs. 15) dorsal scales rows. Regarding the species with 17 dorsal scales rows, A. trefauti differs from A. badius by its dorsal colouration of black with pale brown transverse bands, ventral colouration with scattered brown dots and <30 subcaudals (vs. 'coral colour pattern' with black dyads separated by cream bands; venter immaculate cream anteriorly and with squared black spots from midbody to posterior region of belly; >30 subcaudals); from A. flammigerus by having maximum SVL 300 mm in both sexes and absence of keeled dorsal scales near cloaca (vs. SVL> 300 mm in adults, keeled dorsal scales in A. *flammigerus*); from A. schach by having a black dorsum with beige bands, black iris (Fig. 7) and well-defined hemipenial capitular groove (vs. olive brown with dark greyish brown bands; light brown iris and indistinct hemipenial capitular groove in A. schach) (Fig. 8.1): from A. torquatus by having maximum SVL 300 mm in both sexes and two postoculars (vs. SVL <300 mm in adults from both sexes; one postocular in A. torquatus from GS; Passos and Prudente, 2012); from A. zidoki by having smooth dorsal scales without apical pits, black dorsum with pale brown bands and bilobed hemipenis (vs. apical pits present in dorsal scales, pale brown dorsum with longitudinal series of paravertebral spots and unilobed hemipenis in A. zidoki); from A. snethlageae by having invariably black dorsal ground colour across age and sex (Fig. 9; our sample comprises both adult and females with no indication of ontogenetic change), 15–18 dorsal beige bands in females and 21-40 in males (vs. dark brown dorsum with 24-34



Fig. 7. Colour in life of Atractus schach (1–4) and Atractus trefauti (5–6). Photos: F. Starace (1–2), B. Dupont (3), J. P. Vacher (4) and F. Deschandol (5–6).

dorsal pale bands in females and 28–31 in males). *Atractus trefauti* also differs from *A. snethlageae* in having 24–28 subcaudals in males (vs. 29–34 subcaudals *A. snethlageae*).

**Description of the holotype** (Fig. 6). Adult male, SVL 235 mm, TL 31 mm (13.2% SVL); head slightly distinct from body; head length 7.3 mm (3.1% SVL); head width 5.9 mm (80.2% head length); rostral–eye distance 3.4 mm; nostril–orbit distance 2.4 mm; interorbital distance 3.6 mm; head rounded in lateral view; snout rounded in dorsal view, truncate in lateral view; canthus rostralis little conspicuous; rostral subtriangular in frontal view; 1.8 mm wide, 0.7 mm high, well visible in dorsal view; internasal 0.7 mm long, 0.9 mm wide; internasal suture sinistral with respect to prefrontal suture; prefrontal 2.2 mm long, 1.9 mm wide; supraocular

subtrapezoidal, 1.1 mm long, 0.8 mm wide at broadest point; frontal pyramidal, 2.4 mm long, 2.7 mm wide; parietal 3.7 mm long, 2.4 mm wide; nasal entirely divided, nostril almost restricted to prenasal; prenasal 0.7 mm high, 0.5 mm long; postnasal 0.9 mm high, 0.7 mm long; loreal 1.8 mm long, 0.7 mm high; second, third, and fourth supralabials contacting loreal on left side; second and third supralabials contacting loreal on right side; eye diameter 1.1 mm; pupil rounded; two postoculars similar in height, lower being longer than upper; upper postocular 0.6 mm long, 0.8 mm high; lower postocular 0.5 long, 0.9 mm high; temporal formula 1+2; first temporal 1.6 mm long, 1.0 mm high; upper posterior temporals fused, 2.6 mm long, 1.0 mm wide; supralabials seven, third and fourth contacting eve in right side, supralabials eight, fourth and fifth contacting eye in left side; first supralabial shorter (0.7 mm



Fig. 8. Hemipenial variation of *Atractus* from GS. Left: asulcated view; Right: sulcated view. (1) *Atractus schach*: (AF 1716) from Saul Limonade, French Guiana. (2) *Atractus trefauti*: Holotype (MNRJ 26709) from Roura, French Guiana. (3–6) *Atractus dapsilis*: (3) Paratype (MNRJ 14911), (4) Paratype (MNRJ 16804), (5) Paratype (MNRJ 14912), (6) Holotype (MNRJ 14914).

high) than second (1.0 mm high) and similar in length; third supralabial rectangular, similar in height and longer (0.6 mm) than second: seventh supralabial taller (1.2 mm) and eighth longer (2.2 mm) than remaining supralabials; symphysial subtriangular, 1.3 mm wide, 0.4 mm long; first left infralabial preventing symphysial-chinshields contact; symphysial contacting right chinshield; infralabials eight, first four contacting chinshields; chinshields 3.0 mm long, 1.1 mm wide; gular scale rows three; preventrals three; ventrals 144; subcaudals 25/25; dorsal scale rows 17/17/17, lacking apical pits and supracloacal tubercles; midbody diameter 6.7 mm (2.8% SVL); caudal spine 1.1 mm long, larger than last subcaudal scale (0.7 mm). Maxillary bone arched upward anteriorly in lateral view, ventral portion curved anteriorly and nearly flattened in mid to posterior portion; maxillary with five teeth; teeth angular in cross section, robust at base, narrower at apices, curved posteriorly: first three teeth larger and more closely spaced: fourth teeth slightly smaller, moderately spaced, similar in size to three anterior ones; last teeth smallest with same spacing to fourth; maxillary 'diastema' absent or indistinct from interspaces between fourth and fifth teeth; lateral process of maxilla well developed.

Dorsum of head black, with dark brown spots (each approximately half a dorsal scale long) covering part of

parietals and upper secondary temporals; dorsal ground colour of lower secondary parietal and last supralabial pale brown, with pale area diagonally disposed; background of head black; edges of first four supralabials pale brown, except for fifth and sixth uniformly black; lateral sides of head completely black to the level of postocular and anterior temporal; posterior lower temporal and last supralabial scales pale brown, forming pale area on lateral sides of head (incomplete nuchal band); infralabials and gular region cream with black dots; belly cream with few dispersed brown dots mostly concentrated on lateral parts of ventrals; ventral surface of tail black with cream dots irregularly disposed along subcaudals; dorsal ground colour black with 27 conspicuous beige bands, one-half to one scale long, the first five separate only by vertebral scale, then alternated; beige bands starting on the second or third dorsal scale row; interspaces between bands four to seven scales long; first dorsal scale row beige with cream pigmentation irregularly disposed on each scale; dorsal surface of tail black with four conspicuous bands; tip of tail black.

**Hemipenial morphology.** Organ *in situ* (retracted) extends to the level of fifth subcaudal and bifurcates at fourth subcaudal (n=2). Fully everted and almost maximally expanded hemipenis rendered a moderately



Fig. 9. Morphological variation in *Atractus trefauti*. Left row males: (1) holotype (MNRJ 26709); (3) paratype (MPEG 21354) and (5) paratype (MPEG 21355). Right row females: paratypes: (2) MPEG 25788; (4) MNHN 2015.56 and (6) MPEG 16382.

bilobed, semicapitate and semicalyculate organ (Fig. 8.2); lobular region wider than hemipenial body; lobes symmetrical, rounded and centrifugally oriented; lobes uniformly covered with spinulate calvces on both sides of hemipenis; calvces on distal region of capitulum ornamented with transverse rows of papillae toward apices of each lobe; basal and lateral regions of capitulum with transverse fringes; capitular groove well-defined on asulcate side and less evident on sulcate side of hemipenis; capitulum covering approximately half-length of hemipenial body; hemipenial body elliptical, surrounded with hooked spines: larger spines generally located laterally below sulcus spermaticus bifurcation on sulcate face of organ; distal region of hemipenial body on maximally expanded organs with rows of spines similar size bordering capitulation; sulcus bifurcates for about halflength of organ and each branch centrifugally oriented, running to tip of lobes; sulcus spermaticus deep with margins bordered by relatively thick layer of papillae; sulcus spermaticus bordered by spinules from base of organ to apices of lobes; basal naked pocket extending for almost entire hemipenial body.

**Quantitative variation** (n = 5). Largest female 300 mm SVL, 25 mm TL; largest male 295 mm SVL, 39 mm TL; tail 8.3–9.7% SVL in females; 12.9–13.2% SVL in males, ventrals 153–158 (mean = 156.0; n = 3; SD = 2.6) in females, 139–149 (mean = 143.2; n = 5; SD = 3.8) in males; subcaudals 21–24 (mean = 22.7; n = 3; SD = 1.5) in females, 24–29 (mean = 26.6; n = 5; SD = 2.1) in males; supralabials seven (n = 5 sides) or eight (n = 2 sides); infralabials eight (n = 5 sides); preventrals three (n = 4) or four (n = 1); adult midbody diameter 8.0–8.3 mm; maxillary teeth five (n = 1), six (n = 2 sides), or seven (n = 3 sides).

**Etymology.** The specific epithet honours Dr Miguel Trefaut Urbano Rodrigues from Universidade de São Paulo (USP) for his extensive contributions in the study of New World herpetofauna, especially with respect to *Atractus* from Guiana Shield.

**Distribution and natural history.** *Atractus trefauti* is known to occur in lowland sites ranging from Roura, French Guiana, and Amapá and Pará States in Brazil.

Atractus aboiporu sp. nov. (Figs 10, 11)

**Holotype.** Adult female, MPEG 25796: *coll*. U. Galatti, D. Silvano, and B. Pimenta, 9 November 2000, Serra do Navio, Amapá, Brazil.

Paratype. MPEG 25797: same data as holotype. MPEG 19783: *coll*. U. Galatti and J. A. R. Bernardi, 29 August 2000, Pedra Branca do Amapari, Amapá. (0°51'34"N, 51°52'34"W; 161 m asl).

**Diagnosis.** Atractus aboiporu can be distinguished from all congeners by the unique combination of the following characters: (1) smooth dorsal scale rows 15/15/15; (2) postoculars two; (3) loreal moderately long; (4) temporal formula 1+2; (5) supralabials seven, third and fourth contacting eye; (6) infralabials seven, first four contacting chinshields; (7) maxillary teeth seven; (8) gular scale rows three; (9) preventrals two; (10) ventrals 133–135 in females, unknown in males; (11) subcaudals



**Fig. 10.** Dorsal (1), lateral (2) and ventral (3) views of head of the holotype of *Atractus aboiporu* (MPEG 25796) from Serra do Navio, Amapá, Brazil.

15–16 in females, unknown in males; (12) in preservative, dorsum cinnamon to verona brown with a series of sepia blotches mostly like rhomboidal parallelograms along the vertebral axis; (13) in preservative, venter beige with two rows of sepia dots or square spots, mostly concentrated on the midbody scales; (14) small body size in female (maximum 275 mm SVL); (15) small tail in female (7.6–10.8% SVL).

Comparisons. Among congeners from the Guiana Shield (including highland species), A. aboiporu differs from A. badius, A. duidensis, A. flammigerus, A. latifrons, A. riveroi, A. stevemarki, A. trefauti, A. schach, and A. torquatus by having 15 dorsal scales rows (vs. 17 scales rows). Considering species with 15 dorsal scales rows, A. aboiporu differs from A. insipidus and A. tamessari by having 135 ventrals, 15 subcaudals (vs. >150 and 24, respectively in both species); from A. trilineatus by having a dorsal brown colour brown with conspicuous black vertebral blotches, belly cream with two longitudinal brown stripes, seven supralabials, and seven infralabials (vs. dorsum reddish brown with three conspicuous longitudinal black stripes, belly uniformly cream, eight supralabials, and eight infralabials in A. trilineatus). Atractus aboiporu shares 15/15/15 dorsal scale rows, dorsal ground colour cinnamon to verona brown with sepia blotches drap-bordered, seven supralabials and seven infralabials only with species distributed south of Amazon River, A. boimirim and A. tartarus. However, A. aboiporu differ from both species by having two parallel rows of sepia spots along the belly (vs. venter uniformly creamish white or scattered with brown dots concentrated on lateral portions of ventral scales, but never forming conspicuous stripes in A. boimirim and A. tartarus).

Description of the holotype. Adult female, SVL 275 mm, tail length 23 mm (7.6% SVL); head slightly distinct from body; head length 9.4 mm (3.4% SVL); head width 7.2 mm (76.5% head length): rostral-eve distance 3.6 mm; nostril-orbit distance 2.7 mm; interorbital distance 3.8 mm; head rounded in lateral view; snout rounded in dorsal view, truncate in lateral view; canthus rostralis little conspicuous; rostral subtriangular in frontal view, 1.5 mm wide, 1.0 mm high, well visible in dorsal view; internasal 0.8 mm long, 0.9 mm wide; internasal suture sinistral with respect to prefrontal suture; prefrontal 2.5 mm long, 2.1 mm wide; supraocular subtrapezoidal, 1.8 mm long, 1.3 mm wide at broadest point; frontal pyramidal, 3.1 mm long, 2.7 mm wide; parietal 4.3 mm long, 2.7 mm wide; nasal entirely divided, nostril almost restricted to prenasal; prenasal 0.9 mm high, 0.4 mm long; postnasal 0.9 mm high, 0.6 mm long; loreal 2.2 mm long, 0.8 mm high; second and third supralabials

contacting loreal; third and fourth supralabials entering the orbit; eye diameter 1.4 mm; pupil rounded; two postoculars distinct in height, lower being taller than upper; upper postocular 0.7 mm long, 0.6 mm high; lower postocular 0.5 long, 0.9 mm high; temporal formula 1+2; first temporal 1.9 mm long, 1.4 mm high; upper posterior temporals 0.9 mm long, 0.6 mm wide; supralabials seven, third and fourth contacting eye; first supralabial less tall (0.7 mm high) than second (1.0 mm high) and smaller in length (0.7 mm) than second (1.0 mm); third supralabial pentagonal, longer (1.4 mm) and taller (2.0 mm) than second; sixth supralabial as tall as third; seventh longer (2.3 mm) than remaining supralabials; symphysial subtriangular, 1.3 mm wide, 0.4 mm long; first pair of infralabial preventing symphysial-chinshields contact; infralabials seven, first four contacting chinshields; chinshields 3.8 mm long, 1.4 mm wide; gular scale rows three; three preventrals; ventrals 135; subcaudals 15/15; dorsal scale rows 15/15/15, lacking apical pits and supracloacal tubercles; midbody diameter 6.7 mm (2.8% SVL); caudal spine 1.1 mm long, larger than last subcaudal scale (0.7 mm). Maxillary bone arched upward anteriorly in lateral view, ventral portion curved anteriorly and nearly flattened in mid to posterior portion; maxillary with seven teeth; teeth angular in cross section, robust at base, narrower at apices, slightly curved posteriorly; teeth similar in size and spacing; last teeth slightly smaller and with same spacing as anterior ones: maxillary 'diastema' absent or indistinct from interspaces between fifth and sixth teeth; lateral process of maxilla well developed.

Dorsum of head cinnamon brown, warm sepia spots contacting eye and covering mesial suture between parietals: dorsal ground colour of lower secondary parietal and last supralabial beige, diagonally disposed; edges of first four supralabials beige anteriorly; lateral sides of head completely cinnamon brown into postocular and anterior temporal; posterior lower temporal and last supralabial scales beige diagonally disposed (triangleshaped) (Fig. 10). Ventral ground colour of infralabials and gular region mostly cream with brown spots and blotches; brown spots concentrated on labial margins and posterior region of infralabials; chinshields with few dispersed dots; preventral with midventral squared spots; venter beige with two rows of sepia squared spots arranged nearly longitudinally, forming two irregular midventral stripes along body; ventral surface of tail with two lateral rows of sepia with beige irregular midline along subcaudal sutures; dorsal ground colour verona brown with 35 conspicuous sepia blotches with drap borders (half-scale to one scale long), connected along vertebral region; dorsal blotches (five scales wide and three scales long) similar to parallelograms covering



**Fig. 11.** Morphological variation in *Atractus aboiporu* in dorsal and ventral view. Upper: holotype (MPEG 25796); Middle: paratype (MPEG 25797); Lower: paratype (MPEG 19783).

the five scale rows; interspaces among parallelograms often two scales long; first dorsal scale row cream like ventrals; dorsal surface of tail brown with four conspicuous sepia bands connected along vertebral axis; tip of tail cream (Fig. 11).

#### Hemipenis. Unknown.

**Quantitative variation** (n = 3). Largest female 275 mm SVL, 23 mm TLL; tail 5.1–7.6% SVL in females; 133–135 (mean 133.7; n = 3; SD = 1.2) in females; subcaudals 15–16 (mean 15.3; n = 3; SD = 0.6) in females; supralabials seven (n = 6 sides); infralabials seven (n = 6 sides); preventrals three (n = 3); adult midbody diameter 8.0–8.3 mm; maxillary teeth five (n = 1).

**Etymology.** The specific epithet '*aboiporu*' is a Tupi indigenous name herein used in apposition alluding to the peculiar feeding habits of the new species  $(ab\hat{o}\hat{i} = \text{earthworm}; poru = \text{eater})$ , as well as other congeners.

**Distribution.** Known only from the type locality and Pedra Branca do Amapari, state of Amapá, Brazil.

#### Discussion

Atractus trefauti, A. dapsilis, and A. schach are recovered here as members of a robustly supported

monophyletic group consisting exclusively of bandedspecies endemic to the eastern GS (Fig. 12). Previous molecular datasets using sequences from multiple specimens for single terminals were possibly misleading. For example, Pyron et al. (2013) used sequences from two specimens, to create a single terminal for 'Atractus schach': one from GS and other from Southern Amazon River in the state of Pará. Thus, although a composite terminal or chimaera may improve the support values of some clades recovered in analyses, in this case they are hiding a cryptic biodiversity and phylogenetic relationships. We strongly recommend future molecular phylogenetic studies on Atractus use of same specimen for all loci. If data need to be used from multiple specimens of same taxon then it is best if this is not done in a chimaeric way. The pattern of distribution of A. trefauti in east GS is like that of A. flammigerus (Passos et al., 2017). Some supposedly widespread species of Atractus might represent complexes of narrowly distributed and restricted endemic taxa. For example, the disjunct distribution previously thought for A. zidoki along both banks of the Amazon River (Cunha & Nascimento, 1984), was subsequently proved to include a distinct species (A. hoogmoedi Prudente & Passos, 2010) occurring exclusively south of Amazon River while A. zidoki remains restricted to GS (Prudente & Passos, 2010). Moreover, A. flammigerus, A. riveroi, and A. torquatus form a distinct clade with parapatric distributions, with the first restricted to the extreme east portion of GS (Passos et al., 2017). Although A. torquatus is the only species occurring south of Amazon River, where it is widely distributed across Amazonia (see Passos & Prudente, 2012; Passos, Kok, et al., 2013), A. riveroi is restricted to highlands Tepuis north of the Amazon (Fraga et al., 2017). Although molecular data are unavailable, Atractus aboiporu, is described based on a distinctive set of characters that easily distinguish it from other species occurring in the GS, as well as from recently described Amazonian species (A. boimirim and A. tartarus).

Some pale individuals of *A. dapsilis* resemble *A. schach* but differ from this species by their larger body-size, genital features and higher number of ventral and subcaudal scales. The evolutionary interpretation of the occurrence of sexual dichromatism in the genus *Atractus* remains unclear (see Passos, Lynch, & Fernandes, 2008). Nonetheless, the colour pattern inversion reported herein in *A. dapsilis* is also known in *A. erythromelas* (Passos, Kok, et al., 2013), *A. riveroi* (Fraga et al., 2017; Roze, 1961) and *A. sanctaemartae* (Passos et al., 2008). Recently, de Fraga et al. (2017) discussed how poor sampling of species of *Atractus* might lead researchers to hypothesize instances of endemism that are artefactual. Some *Atractus* species are probably more difficult to detect in the field,



Fig. 12. Known distribution of *Atractus aboiporu* (stars), *A. dapsilis* (squares), *A. schach* (pentagons) and *A. trefauti* (circles). Yellow symbols are type localities. Literature records for *Atractus schach* are based in Hoogmoed (1980), Hoogmoed and Ávila-Pires (1991), Chippaux (1986), Starace (1998), and Vidal et al. (2000).

especially in highlands, where soils, vegetation, and habitus must be adapted to the environmental restrictions (Passos, Kok, et al., 2013) with fewer prey items available, because *Atractus* are earthworm-feeding specialists, this probably limits the population size and consequently its abundance (with direct effects in detectability).

We identified the composite nature of the type series of *A. snethlageae* and have described three distinct species based on the hemipenial morphology, pholidosis, and colouration. We also corroborate GS endemism for *A. schach*. Populations south of the Amazon River previously attributed to *A. schach* (Cunha & Nascimento, 1993; Nascimento et al., 1988) are instead part of a species complex closely related to *A. snethlageae* (PRMS, unpubl. data). However, we refrain from formal taxonomic decisions here, awaiting the results of analyses sampling extensively along the Amazonian lowlands, as well the Andean foothills.

Recent advances in *Atractus* systematics have been contrasting. On one hand, new species have been described morphologically in detail using large series and through comparisons (e.g., A. boimirim and A. tartarus; Passos et al., 2016). On the other hand, some species have been described based mostly on molecular phylogenetic analyses, and using small samples, less morphological detail, and limited taxonomic comparisons (A. cerberus, A. esepe, and A. pyroni; Arteaga et al., 2017). In the current 'biodiversity crisis' (Wilson, 1985), we need to make species discovery and descriptions faster to improve conservation strategies and provide support to protect areas (Fouquet et al., 2018; Passos et al., 2018). However, we also recommend that even for geographically limited samples positioned on some partial phylogenetic hypotheses, the inference of species boundaries should be based on as much evidence as available, following the congruence between distinct systems of characters and integrating them whenever possible (Padial et al., 2009). Taxonomic instability will not help conservation.

Passos et al. (2016) proposed the Atractus flammigerus species group to accommodate A. tartarus and many other banded cis-Andean species, that share a combination of phenotypic characters (mainly from the hemipenial morphology). The tentative inclusions of trans-Andean species should be tested in a most inclusive approach, but probably they will be geographically structured and nested among distinct clades (see Passos et al., 2009; Arteaga et al., 2017). Our study is the most-densely taxon and character sampled systematic investigation of the *Atractus flammigerus* species group thus far, including five out of eight species, and mito-chondrial and nuclear markers, as well as morphological data (meristic, morphometric, colour pattern, and genital features). Our results suggest the non-monophyly of this group as originally conceived.

The congruence between distinct systems of characters may solve the limitation of data through integration of primary sources of information using those that have not been exhaustively implemented for the entire genus Atractus. For example, the keeled scales above cloaca mentioned for Atractus flammigerus in Hoogmoed (1980) arises as a putative robust character that could be useful for taxonomic purposes among the species group. Recently, Passos et al. (2017) has employed new techniques such as scale micro-ornamentation and computerized tomography scanning and proved to be successful in distinguishing between species being useful and noninvasive, allowing integrity of type specimens. Among other useful character systems in the Atractus taxonomy are the osteology, glands, soft anatomy, scales' macro and micro-ornamentation, and genital features (Passos et al., 2016, 2017), but all these phenotypic systems useful to accommodate species restricting comparisons into small operational groups are virtually unexplored. Currently hypotheses of relationships for the genus Atractus are incomplete due to the absence of the majority of Andean species and related genera such as Geophis Wagler 1830 and Adelphicos (Passos et al., 2013; Passos et al., 2018).

#### Acknowledgements

We thank M. Wilkinson, D. Gower, E. Shubert, and an anonymous reviewer, who improved the manuscript with valuable suggestions. We also thank A. Kupfer (SMNHS), E. Dondorp (RMNH), L. Vonnahme, and D. A. Kizirian (AMNH), S. Schweiger, G. Gassner, and A. Schumacher (NHW) who provided useful data. F. Starace, B. Dupont, L. Mendes, M. S. Hoogmoed, M. Sena, R. S. Bérnils, S. Sant, J.-P. Vacher, E. Courtois, M. Dewynter, and F. Deschandol helped with images of living specimens. We also thank staff from Reserve Naturelle de la Trinité and Parc Amazonien de Guyane by Access and Benefit Sharing Agreement (APA no. 973-23-1). We acknowledge support from an 'Investissement d'Avenir' grant managed by Agence Nationale de la Recherche (CEBA, ref.ANR-10-LABX-25-01).We also thank J. C. Silva, local people and staff from Reserva Extrativista Arapixi. SISBIO granted the permit (#51748-1). We thank the Nature Conservation Division and the STINASU for collecting permits in Suriname and colleagues Paul Ouboter and Rawien Jairam.

#### Funding

PRMS was CAPES fellow (88882.183267/2018-01). PP was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (process 302611/2018-5, and 306227/2015-0) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (E-26/202.737/2018). Molecular work and fieldwork by OTC was funded by SENESCYT under the 'Arca de Noé' Initiative (PIs: S.R. Ron and OTC).

#### Supplemental data

Supplemental data for this article can be accessed here: https://dx.doi.org/10.1080/14772000.2019.1614694.

#### ORCID

Paulo Roberto Melo-Sampaio (b) http://orcid.org/0000-0003-1858-1643

Paulo Passos b http://orcid.org/0000-0002-1775-0970 Antoine Fouquet b http://orcid.org/0000-0003-4060-0281

Ana Lucia Da Costa Prudente D http://orcid.org/0000-0002-4164-6815

*Omar Torres-Carvajal* b http://orcid.org/0000-0003-0041-9250

#### References

- Almeida, P. C., Feitosa, D. T., Passos, P., & Prudente, A. L. C. (2014). Morphological variation and taxonomy of *Atractus latifrons* (Günther, 1868) (Serpentes: Dipsadidae). *Zootaxa*, 3860, 64–80.
- Arteaga, A., Mebert, K., Valencia, J. H., Cisneros-Heredia, D. F., Peñafiel, N., Reyes-Puig, C., ... Guayasamin, J. M. (2017). Molecular phylogeny of *Atractus* (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa. *ZooKeys*, 661, 91–123.
- Ávila-Pires, T. C. S. (2005). Reptiles. In T. Hollowell & R. P. Reynolds (Eds.), Checklist of the Terrestrial Vertebrates of

the Guiana Shield (pp. 25-40). Washington, DC: Biological Society of Washington.

- Ávila-Pires, T. C. S., Hoogmoed, M. S., & Vitt, L. J. (2007). Herpetofauna da Amazônia. In L. B. Nascimento & M. E. Oliveira (Eds.), *Herpetologia no Brasil II* (pp. 13–43). Belo Horizonte: Sociedade Brasileira de Herpetologia.
- Ávila-Pires, T. C. S., Hoogmoed, M. S., & Rocha, W. A. (2010). Notes on the Vertebrates of northern Pará, Brazil: A forgotten part of the Guianan Region, I. Herpetofauna. *Boletim Do Museu Paraense Emílio Goeldi. Ciências Naturais*, 5, 13–112.
- Blair, C., Mendez de la Cruz, F. R., Ngo, A., Lindell, J., Lathrop, A., & Murphy, R. W. (2009). Molecular phylogenetics and taxonomy of leaf-toed geckos (Phyllodactylidae: *Phyllodactylus*) inhabiting the peninsula of Baja California. *Zootaxa*, 2027, 28–42.
- Bickham, J. W., Wood, C. C., & Patton, J. C. (1995). Biogeographic implications of cytochrome-b sequences and allozymes in sockeye (Oncorhynchus nerka). Journal of Heredity, 86, 140–144.
- Boie, F. (1827). Bemerkungen Über Merrem's Verfuch eines Systema der Amphibien. *Isis Von Oken*, 20, 508–565.
- Boulenger, G. A. (1894). Catalogue of the Snakes in the British Museum (Natural History). Vol. 2. London: Trustees of the British Museum.
- Chippaux, J. P. (1986). Les serpents de la Guyane Française. Paris: Ostrom.
- Cole, C. J., Townsend, C. R., Reynolds, R. P., MacCulloch, R. D., & Lathrop, A. (2013). Amphibians and reptiles of Guyana, South America: Illustrated keys, annotated species accounts, and a biogeographic synopsis. *Proceedings of the Biological Society of Washington*, 125, 317–578.
- Cunha, O. R., & Nascimento, F. P. (1978). Ofídios da Amazônia X: As cobras da região leste do Pará. *Publicações* Avulsas Do Museu Paraense Emílio Goeldi, 31, 1–218.
- Cunha, O. R., & Nascimento, F. P. (1983). Ofídios da Amazônia XX – As espécies de Atractus Wagler, 1828, na Amazônia oriental e Maranhão (Ophidia, Colubridae). Boletim Do Museu Paraense Emílio Goeldi, Nova Série Zoologia, 123, 1–38.
- Cunha, O. R., & Nascimento, F. P. (1984). Ofídios da Amazônia XXI – Atractus zidoki no leste do Pará e notas sobre A. alphonsehogei e A. schach. Boletim Do Museu Paraense Emílio Goeldi, Série Zoologia, 1, 219–228.
- Cunha, O. R., & Nascimento, F. P. (1993). Ofídios da Amazônia X - As cobras da região Leste do Pará. Boletim Do Museu Paraense Emilio Goeldi, 9, 1–191.
- Dowling, H. G. (1951). A proposed standard system of counting ventrals in snakes. *British Journal of Herpetology*, 1, 97–99.
- Dowling, H. G., & Savage, J. M. (1960). A guide to snake hemipenis: a survey of basic structure and systematic characteristics. *Zoologica*, 45, 17–28.
- Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution*, 29, 1969–1973.
- Duméril, A. M. C., Bibron, G., & Duméril, A. H. A. (1854). Erpétologie Générale ou Histoire Naturelle Compléte des Reptiles. Vol. 7. Paris: Librairie Encyclopédique de Roret.
- Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D., & Lailvaux, S. P. (2016). A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. *Public Library of Science One*, *11*, 1–31.

- Fouquet, A., Gilles, A., Vences, M., & Marty, C. (2007). Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. *Public Library of Science One*, 2, e1109.
- Fouquet, A., Vacher, J.-P., Courtois, E. A., Villette, B., Reizine, H., Gaucher, P., ... Kok, P. J. R. (2018). On the brink of extinction: two new species of *Anomaloglossus* from French Guiana and amended definitions of *Anomaloglossus degranvillei* and *A. surinamensis* (Anura: Aromobatidae). *Zootaxa*, 4379, 1–23.
- Fraga, R., Lima, A. P., Prudente, A. L. C., & Magnusson, W. E. (2013). Guia de cobras da região de Manaus – Amazônia Central. Manaus: INPA.
- Fraga, R., Almeida, A. P., Moraes, L. C. J., Gordo, M., Pirani, R., Zamora, R. R., ... Werneck, F. P. (2017). Narrow endemism or insufficient sampling? Geographic range extension and morphological variation of the poorly known *Atractus riveroi* Roze, 1961 (Serpentes: Dipsadidae). *Herpetological Review*, 48, 281–284.
- Funk, W. C., Caminer, M., & Ron, S. R. (2012). High levels of cryptic species diversity uncovered in Amazonian frogs. *Proceedings of the Royal Society B*, 279, 1806–1814.
- Grazziotin, F. G., Zaher, H., Murphy, R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012).
  Molecular phylogeny of the New World Dipsadidae (Serpentes: Colubroidea): a reappraisal. *Cladistics*, 28, 437–459.
- Hammond, D. S. (2005). Tropical Forests of the Guiana Shield: Ancient Forests in a Modern World. Wallingford: CABI Publishing.
- Hoegg, S., Vences, M., Brinkmann, H., & Meyer, A. (2004). Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. *Molecular Biology and Evolution*, 21, 1188–1200.
- Hoogmoed, M. S. (1979). The herpetofauna of the Guianan Region. In W. E. Duellman (Ed.), *The South American herpetofauna: its origin, evolution and dispersal* (pp. 241–279). Lawrence: The University of Kansas Monographs.
- Hoogmoed, M. S. (1980). Revision of the genus *Atractus* in Surinam, with the ressurection of two species (Colubridae, Reptilia). Notes on the Herpetofauna of Surinam VII. *Zoologische Verhandelingen*, 175, 1–47.
- Hoogmoed, M. S., & Ávila-Pires, T. C. S. (1991). Annotated checklist of the herpetofauna of Petit Saut, Sinnamary River, French Guiana. Zoologische Mededelingen, 65, 53–88.
- Hoogmoed, M. S., Pinto, R. R., Rocha, W. A., & Pereira, E. G. (2009). A new species of *Mesobaena* Mertens, 1925 (Squamata: Amphisbaenidae) from Brazilian Guiana, with a key to the Amphisbaenidae of the Guianan Region. *Herpetologica*, 65, 436–448.
- Hollowell, T., & Reynolds, R. P. (2005). Checklist of the terrestrial vertebrates of the Guiana Shield. Bulletin of the Biological Society of Washington, 13, 1–98.
- Kendall, S., Yeo, M., Henttu, P., & Tomlinson, D. R. (2001). Alternative splicing of the Neurotrophin-3 gene gives rise to different transcripts in a number of human and rat tissues. *Journal of Neurochemistry*, 75, 41–47.
- Kok, P. J. R. (2010). A new species of *Chironius* Fitzinger, 1826 (Squamata: Colubridae) from the Pantepui region, northeastern South America. *Zootaxa*, 2611, 31–44.
- Köhler, G. (2012). *Color catalogue for field biologists*. Affenbach: Herpeton.

- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870–1874.
- Lanfear, R., Calcott, B., Ho, S. Y., & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, 29, 1695–1701.
- Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular Biology* and Evolution, 34, 772–773.
- Lawson, R., Slowinski, J. B., Crother, B. I., & Burbrink, F. T. (2005). Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. *Molecular Phylogenetics and Evolution*, 37, 581–601.
- Martins, M., & Oliveira, M. E. (1993). The snakes of the genus *Atractus* Wagler (Reptilia: Squamata: Colubridae) from the Manaus region, central Amazônia, Brazil. *Zoologische Mededelingen*, 69, 21–40.
- Martins, M., & Oliveira, M. E. (1998). Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil. *Herpetological Natural History*, 6, 78–150.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Los Angeles: Proceedings of the Gateway Computing Environments Workshop.
- Moraes, L., Almeida, A., de Fraga, R., Zamora, R., Pirani, R., Silva, A., ... Werneck, F. (2017). Integrative overview of the herpetofauna from Serra da Mocidade, a granitic mountain range in northern Brazil. *ZooKeys*, 715, 103–159.
- Morato, S. A. A., Calixto, P. O., Mendes, L. R., Gomes, R., Galatti, U., Trein, F. L., ... Ferreira, G. N. (2014). Guia fotográfico de identificação da herpetofauna da Floresta Nacional de Saracá-Taquera, Estado do Pará. Curitiba: STCP Engenharia de Projetos Ltda.
- Morato, S.A.A., Ferreira, G.N., Scupino, M. R. C. Eds. (2018). Herpetofauna da Amazônia Central: Estudos na FLONA de Saracá-Taquera. Curitiba: STCP Engenharia de Projetos Ltda.
- Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. *Zootaxa*, 3782, 1–110.
- Murphy, J. C., Jowers, M. J., Lehtinen, R. M., Charles, S. P., Colli, G. R., Peres, A. K., ... Pyron, R. A. (2016). Cryptic, sympatric diversity in tegu lizards of the *Tupinambis teguixin* Group (Squamata, Sauria, Teiidae) and the description of three new species. *Plos One*, 11, e0158542.
- Nascimento, F. P., Ávila-Pires, T. C., & Cunha, O. R. (1988). Répteis Squamata de Rondônia e Mato Grosso coletados através do Programa Pólo Noroeste. *Boletim Do Museu Paraense Emílio Goeldi*, 4, 21–66.
- Oliveira, E. A., & Hernández-Ruz, E. J. (2016). Morphological variation in *Atractus tartarus* (Serpentes: Dipsadidae) from the Xingu River, east Amazon, Brazil and preliminary phylogenetic relationship in *Atractus. International Journal of Research Studies in Biosciences*, *4*, 1–7.
- Padial, J. M., Castroviejo-Fisher, S., Köhler, J., Vilà, C., Chaparro, J. C., & De la Riva, I. (2009). Deciphering the products of evolution at the species level: the need for an integrative taxonomy. *Zoologica Scripta*, 38, 431–447.
- Palumbi, S. R., Martin, A., Romano, S., McMillan, W. O., Stice, L., & Grabowski, G. (1991). The simple fool's guide

to PCR, version 2. Honolulu: University of Hawaii Zoology Department.

- Passos, P., Fernandes, D. S., & Borges-Nojosa, D. M. (2007). A new species of *Atractus* (Serpentes: Dipsadinae) from a relictual forest in northeastern Brazil. *Copeia*, 2007, 788–797.
- Passos, P., Lynch, J. D., & Fernandes, R. (2008). Taxonomic status of *Atractus sanctaemartae* and *Atractus nebularis*, and description of a new *Atractus* from the Atlantic coast of Colombia. *Herpetological Journal*, 18, 175–186.
- Passos, P., Rivas, G. F., & Barrio-Amorós, C. L. (2009). Description of two new species from Venezuela in the highly diverse dipsadine genus *Atractus* (Serpentes: Colubridae). *Amphibia-Reptilia*, 30, 233–243.
- Passos, P., Fernandes, R., Bérnils, R. S., & Moura-Leite, J. C. (2010). Taxonomic revision of Atlantic Forest *Atractus* (Serpentes: Dipsadidae). *Zootaxa*, 2364, 1–63.
- Passos, P., Cisneros-Heredia, D. F., Rivera, D. E., Aguilar, C., & Schargel, W. E. (2012). Rediscovery of *Atractus microrhynchus* and reappraisal of the taxonomic status of *A. emersoni* and *A. natans* (Serpentes: Dipsadidae). *Herpetologica*, 68, 375–392.
- Passos, P., & Prudente, A. L. C. (2012). Morphological variation, polymorphism and taxonomy of the *Atractus torquatus*3 complex (Serpentes: Dipsadidae). *Zootaxa*, 3407, 1–21.
- Passos, P., Kok, P. J. R., Albuquerque, N. R., & Rivas, G. (2013). Groundsnakes of the Lost World: a review of *Atractus* (Serpentes: Dipsadidae) from the Pantepui region, northern South America. *Herpetological Monographs*, 27, 52–86.
- Passos, P., Teixeira, M., Jr., Recoder, R., Sena, M. A., Dal Vechio, F., Pinto, ..., Rodrigues, M. T. (2013). A new species of *Atractus* (Serpentes: Dipsadidae) from Serra do Cipó, Espinhaço Range, Southeastern Brazil, with proposition of a new species group to the genus. *Papéis Avulsos de Zoologia*, 53, 75–85.
- Passos, P., Prudente, A. L. C., & Lynch, J. D. (2016). Redescription of *Atractus punctiventris* and description of two new *Atractus* (Serpentes: Dipsadidae) from Brazilian Amazonia. *Herpetological Monographs*, 30, 1–20.
- Passos, P., Ramos, L. O., Fouquet, A., & Prudente, A. L. C. (2017). Taxonomy, morphology and distribution of *Atractus flammigerus* Boie, 1827 (Serpentes: Dipsadidae). *Herpetologica*, 73, 349–363.
- Passos, P., Prudente, A. L. C., Ramos, L. O., Caicedo-Portilla, J. R., & Lynch, J. D. (2018). Species delimitations in the *Atractus collaris* complex (Serpentes: Dipsadidae). *Zootaxa*, 4392, 491–520.
- Pesantes, O. (1994). A method for preparing hemipenis of preserved snakes. *Journal of Herpetology*, 28, 93–95.
- Peters, J. A. (1964). *Dictionary of Herpetology*. New York: Hafner.
- Prudente, A. L. C., & Passos, P. (2008). A new species of *Atractus* Wagler, 1828 (Serpentes: Dipsadinae) from Guyana Plateau in Northern Brazil. *Journal of Herpetology*, 42, 723–732.
- Prudente, A. L. C., & Passos, P. (2010). New cryptic species of *Atractus* (Serpentes: Dipsadidae) from Brazilian Amazonia. *Copeia*, 2010, 397–404.
- Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. *BioMed Central Evolutionary Biology*, 13, 1–53.
- Pyron, R. A., Guayasamin, J. M., Peñafiel, N., Bustamante, L., & Arteaga, A. (2015). Systematics of Nothopsini

(Serpentes, Dipsadidae), with a new species of *Synophis* from the Pacific Andean slopes of southwestern Ecuador. *ZooKeys*, *541*, 109–147.

- Pyron, R. A., Arteaga, A., Echevarría, L. Y., & Torres-Carvajal, O. (2016). A revision and key for the tribe Diaphorolepidini (Serpentes: Dipsadidae) and checklist for the genus *Synophis. Zootaxa*, 4171, 293–320.
- Ribeiro, M. A., Jr, Silva, M. B., & Lima, J. D. (2016). A new species of *Bachia* Gray 1845 (Squamata: Gymnophthalmidae) from the Eastern Guiana Shield. *Herpetologica*, 72, 148–156.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., ... Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61, 539–542.
- Sabaj, M. H. (2016). Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference. Version 6.5. Washington, DC: American Society of Ichthyologists and Herpetologists. Retrieved from http://www.asih.org/ (accessed 16 August 2016).
- Savage, J. M. (1960). A revision of the Ecuadorian snakes of the colubrid genus Atractus. Miscellaneous Publications of the Museum of Zoology University of Michigan, 112, 1–86.
- Schargel, W., Lamar, W. W., Passos, P., Valencia, J. H., Cisneros-Heredia, D. F., & Campbell, J. A. (2013). A new giant *Atractus* (Serpentes: Dipsadidae) from Ecuador, with notes on some other large Amazonian congeners. *Zootaxa*, 3721, 455–474.
- Schlegel, H. (1837). *Essai sur la physionomie dês serpens*. Vol. 1 and 2. Amsterdam: La Haye (J. Kips, J. HZ. et W. P. van Stockum).
- Starace, F. (1998). Guide de serpents et amphisbénes de Guyane. Gadeloupe: Ibis Rouge.
- Sullivan, J., & Joyce, P. (2005). Model selection in phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 36, 445–466.
- Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research*, 22, 4673–4680.
- Torres-Carvajal, O., Lobos, S. E., & Venegas, P. J. (2015). Phylogeny of Neotropical Cercosaura (Squamata: Gymnophthalmidae) lizards. Molecular Phylogenetics and Evolution, 93, 281–288.

- Torres-Carvajal, O., Koch, C., Venegas, P. J., & Poe, S. (2017). Phylogeny and diversity of neotropical monkey lizards (Iguanidae: *Polychrus* Cuvier, 1817). *Public Library* of Science One, 12, e0178139.
- Vacher, J.-P., Kok, P. J. R., Rodrigues, M. T., Lima, J. D., Lorenzini, A., Martinez, Q., ... Fouquet, A. (2017). Cryptic diversity in Amazonian frogs: integrative taxonomy of the genus *Anomaloglossus* (Amphibia: Anura: Aromobatidae) reveals a unique case of diversification within the Guiana Shield. *Molecular Phylogenetics and Evolution*, 112, 158–173.
- Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics*, 27, 171–180.
- van Lidth de Jeude, T. W. (1904). Reptiles and batrachians from Surinam. *Notes from the Leyden Museum*, 25, 83–94.
- Vidal, N., Kindl, S. G., Wong, A., & Hedges, S. B. (2000). Phylogenetic relationships of Xenodontine snakes inferred from 12S and 16S ribosomal RNA sequences. *Molecular Phylogenetics and Evolution*, 14, 389–402.
- Wagler, J. (1828). Auszüge aus seinem Systema Amphibiorum. Isis Von Oken, 21, 740–744.
- Wagler, J. G. (1830). Natürliches System der Amphibien, mit vorangehender Classification der Saugthiere und Vogel. Ein Beitrag zur vergleichenden Zoologie. Munchen: J.G. Cotta schen Buchhandlung.
- Wilson, E. O. (1985). The biological diversity crisis. *Bioscience*, 35, 700–706.
- Zaher, H. (1999). Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of Colubroid hemipenes. Bulletin of the American Museum of Natural History, 240, 1–168.
- Zaher, H., Oliveira, M. E., & Franco, F. L. (2008). A new, brightly colored species of *Pseudoboa* Schneider, 1801 from the Amazon Basin (Serpentes, Xenodontinae). *Zootaxa*, 1674, 27–37.
- Zimmerman, B. L., & Rodrigues, M. T. (1990). Frogs, snakes, and lizards of the INPA-WWF Reserves near Manaus, Brazil. In A. H. Gentry (Ed.), *Four neotropical rainforests* (pp. 426–454). New Haven, CT: Yale University.

#### Associate Editor: Mark Wilkinson